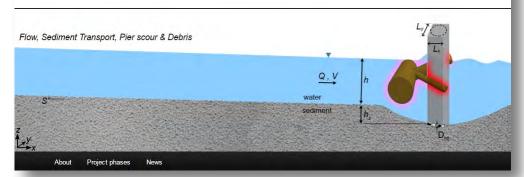
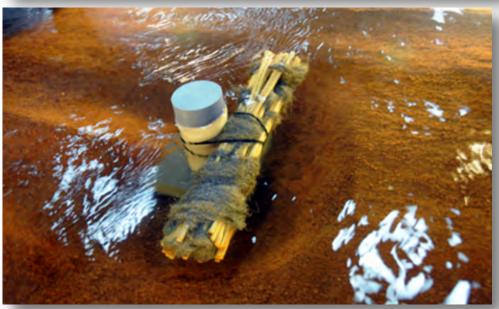


Debris Loads, Bridge/Culvert failure, and Climate Change

Identifying stream reaches most susceptible to climate-exacerbated debris load


Seth Lawler, Mathew Mampara, Kristine Mosuela, Mathini Sreetharan


Debris Accumulation & Scour

P Search

Risk Assessment of Masonry Bridges Under Flood Conditions: Hydrodynamic Effects of Debris Blockage and Scour

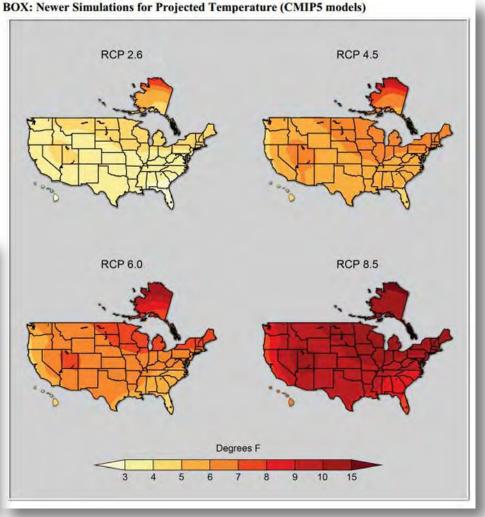
- Wears away earth and soil that anchors piers
- Compromises capacity to withstand lateral forces (flow, accumulated debris, cars)

http://blogs.exeter.ac.uk/ramb/tag/debris-blockage/ http://cee.illinois.edu/news/research-helps-optimize-alaska-railroad-bridge http://www.ayresassociates.com/wp-content/uploads/2016/06/scour-5_sized.jpg

- Scour and flood cause
 ~half of all bridge
 failures
- FHWA
 ~\$20 million/year
 spent on repairing

failed bridges

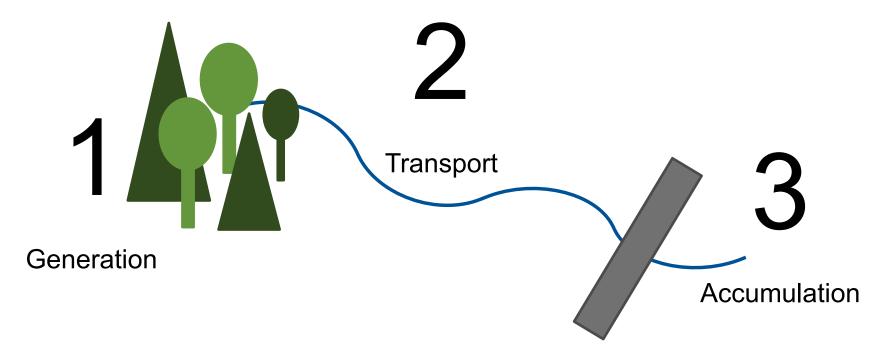
Bradley, J.B. et al., 'Debris Control Structures Evaluation and Countermeasures,' Hydraulic Engineering Circular 9. US Department of Transportation, FHWA. October 2005. Cook, W. 'Bridge Failure Rates, Consequences, and Predictive Trends,' Utah State University. 2014. Lee, et. al. 'A Study of U.S. Bridge Failures (1980-2012),' Technical Report MCEER-13-0008. 2013.


Trent, R. 'An Evaluation of Highway Flood Damage Statistics,' ASCE Water Forum. 1992.

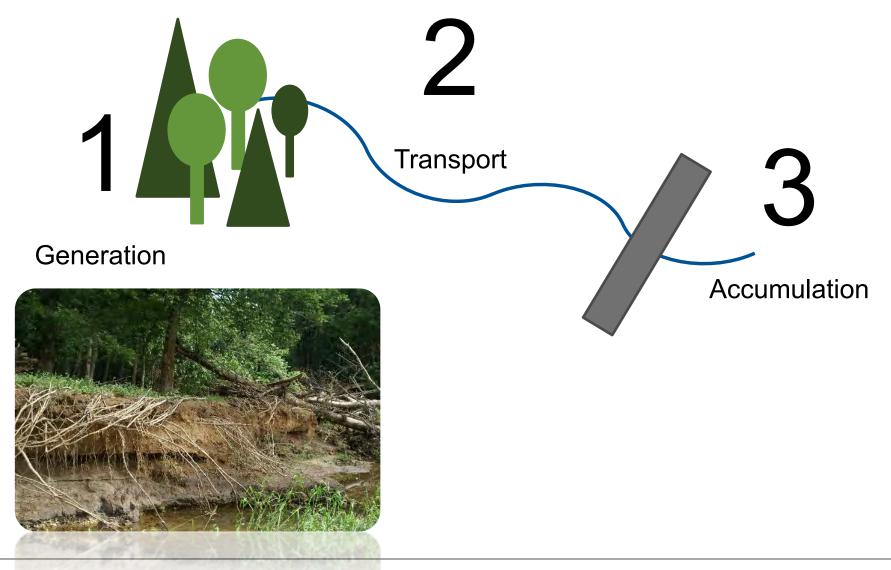
Wardhana, K. 'Analysis of Recent Bridge Failures in the United States,' ASCE Journal of Performance of Constructed Facilities. 2003

NYSERDA & NYSDOT

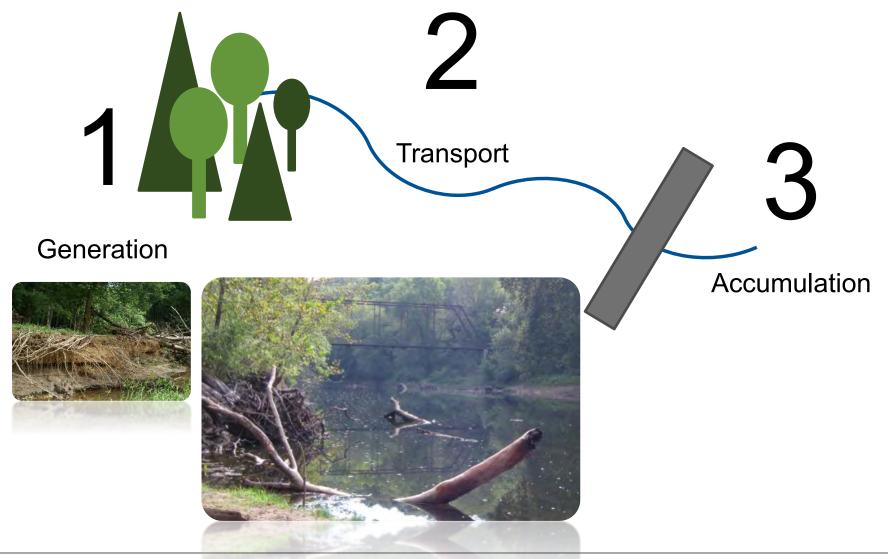
- Identify HUC-12's most at risk
- Climate Resilience → Increased temperatures& precipitation



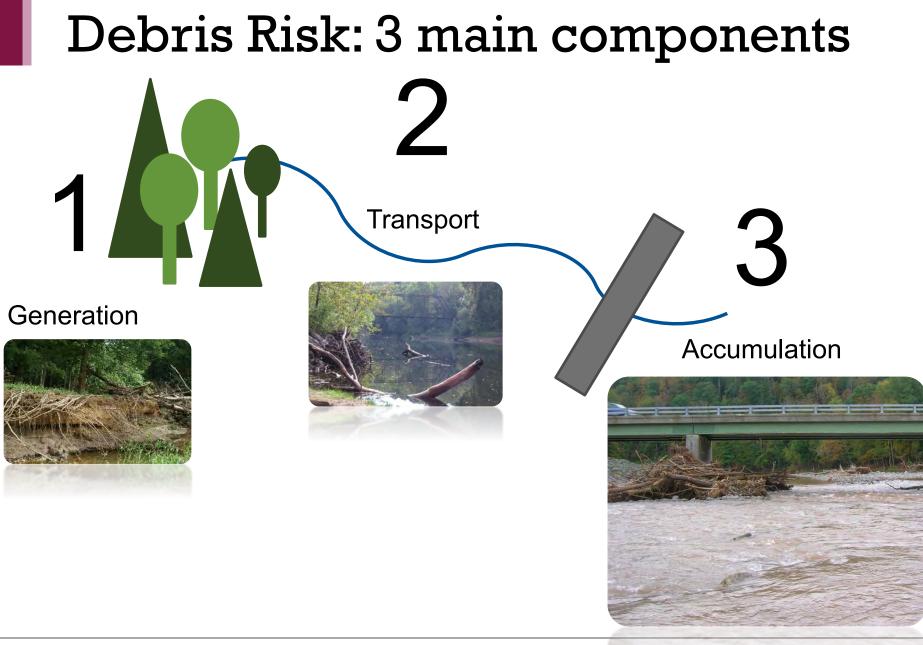
https://www.washingtonpost.com/news/wonk/wp/2013/01/11/graph-of-the-day-were-on-pace-to-heat-the-u-s-by-10f/ Bradley, J.B. et al., 'Debris Control Structures Evaluation and Countermeasures,' Hydraulic Engineering Circular 9. US Department of Transportation, FHWA. October 2005.



Debris Risk: 3 main components

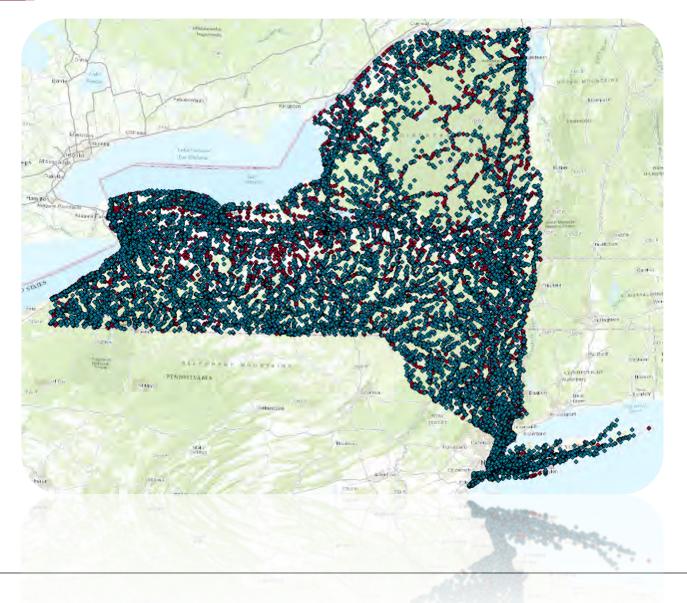

Debris Risk: 3 main components

https://upload.wikimedia.org/wikipedia/commons/8/8f/Pimmit_bank_erosion.JPG


Debris Risk: 3 main components

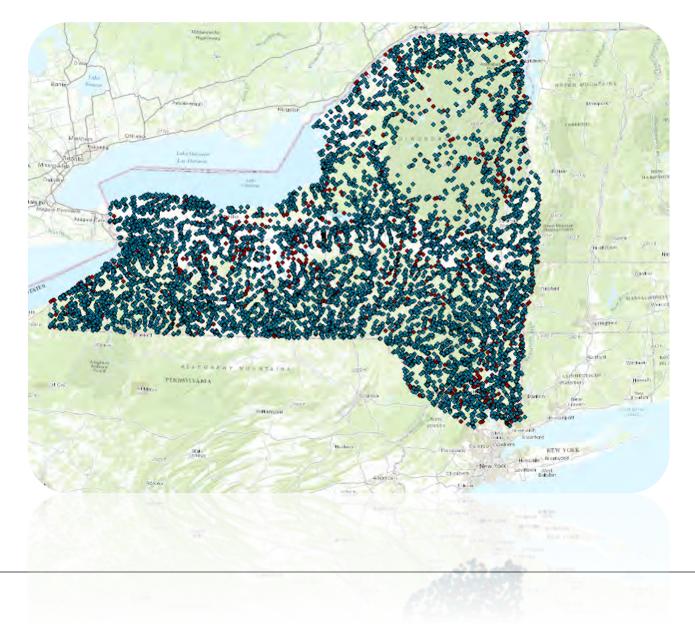
https://upload.wikimedia.org/wikipedia/commons/8/8f/Pimmit_bank_erosion.JPG

 $http://nature.mdc.mo.gov/sites/default/files/styles/centered_full/public/images/conservation/Cross\%20Timbers\%20Access.JPG?itok=GW1m0MdR$



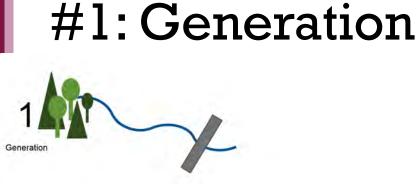
https://upload.wikimedia.org/wikipedia/commons/8/8f/Pimmit_bank_erosion.JPG

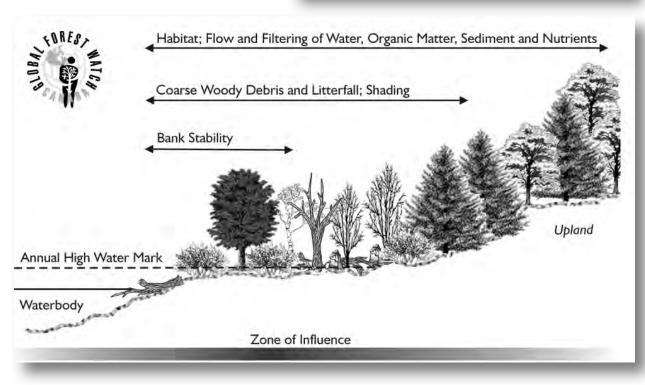
 $http://nature.mdc.mo.gov/sites/default/files/styles/centered_full/public/images/conservation/Cross%20Timbers%20Access.JPG?itok=GW1m0MdR_interval and interval a$


Data: Structures

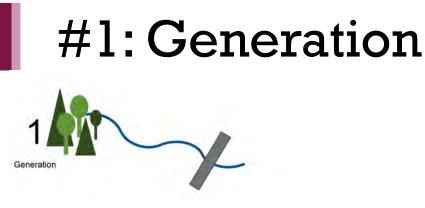
NYGIS Data Clearing House:

- 1. ~20,000 Bridges (blue)
- 2. ~10,00 Large Culverts (red)

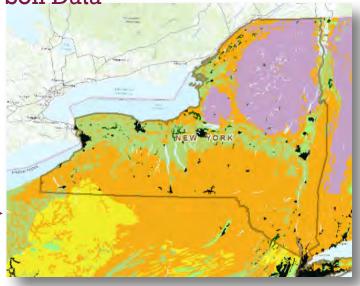

Data: Structures at Crossings

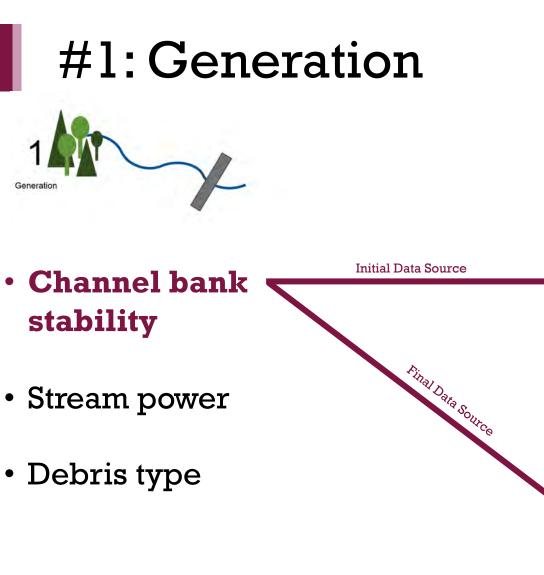

NYGIS Data Clearing House:

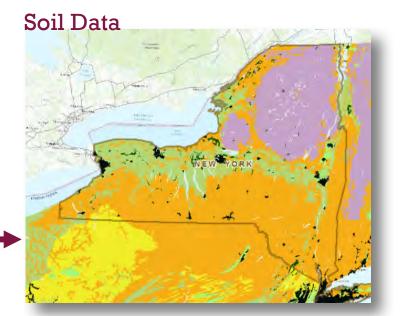
- 1. ~20,000 Bridges (blue)
 - > 10,000 crossing waterways
- 2. ~10,000 Large Culverts (blue)

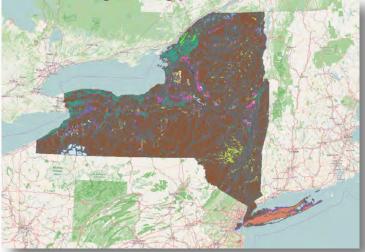

> 1,500 crossing waterways

- Channel bank stability
- Stream power
- Debris type



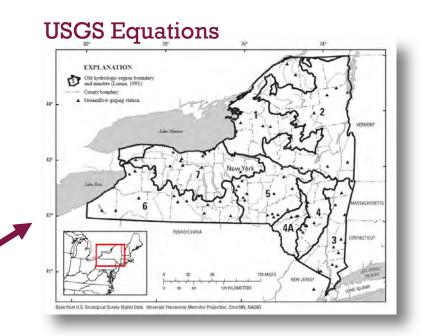

• Channel bank stability Initial Data Source


Soil Data

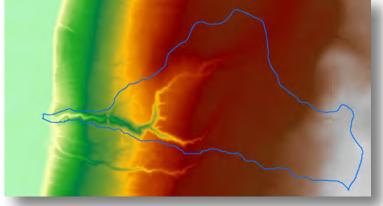

- Stream power
- Debris type

Surficial geology

#1: Generation



- Channel bank stability
- Stream power


 $\Omega = QS$

Stream power = Flow x Slope

• Debris Type

USGS 10m DEM

#1: Generation

- Channel bank stability
- Stream power
- Debris Type

Bridge/Culvert points

SSURGO Soil Classification Vegetation

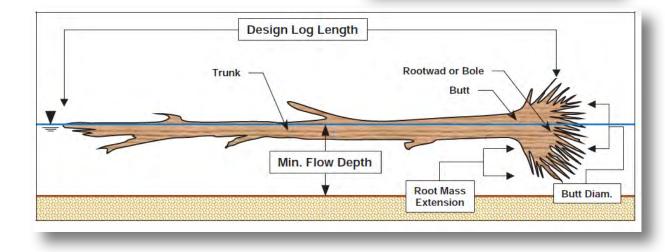
Soil Class

Holderton Minoa Wayl Unadilla Suncook Worth Scio Chautauqua Tioga Sunapee Northway Fremont afond

red maple, sugar maple, white ash, wal Aspen, white ash, cherry, white pine, red maple, alder, willow Sugar maple, American beech, red oak, sycamore, aspen, cotton wood, white oa northern red oak, eastern white pine, northern red oak, white ash, sugar map sugar maple, white ash, northern red o maple, ash, red oak, elm northern red oak, sugar maple, eastern red maple, eastern white pine, yellow sugar maple, oak, white ash, yellow bi

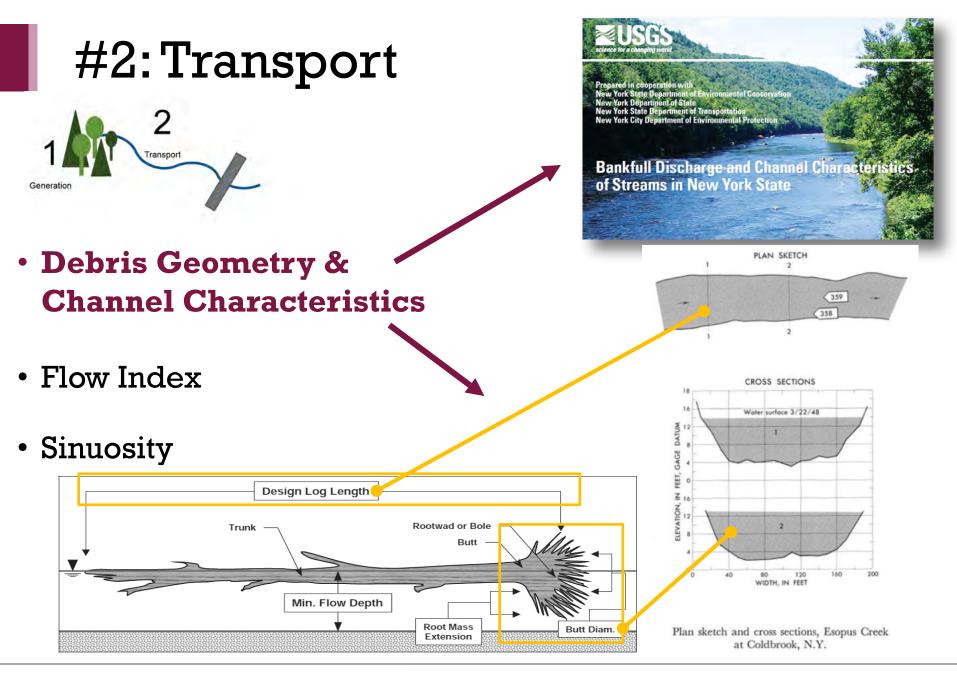
- Debris Geometry & Channel Characteristics
- Flow Index
- Sinuosity

- Debris Geometry &
 Channel Characteristics
- Flow Index


Soil Class Holderton Minoa Wayl Unadilla Suncook Worth Scio Chautauqua Tioga Sunapee Northway

NORTH AMERICAN TREES 1999

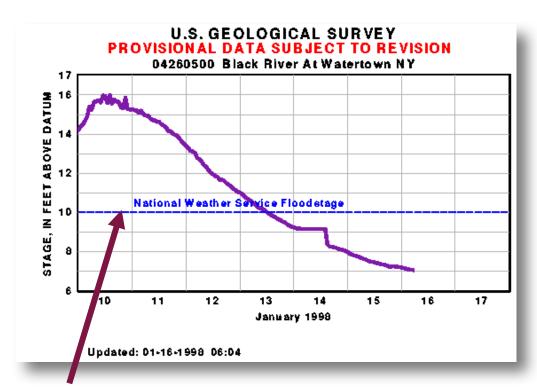
Vegetation


red maple, sugar maple, Aspen, white ash, cherry red maple, alder, willow Sugar maple, American be sycamore, aspen, cotton northern red oak, easter northern red oak, white sugar maple, white ash, maple, ash, red oak, e northern red oak, sugar red maple, eastern white sugar maple, oak, white

Fremont

• Sinuosity

http://static.panoramio.com/photos/large/89341321.jpg Lagasse, P. F. et al, 'Effects of Debris on Bridge Pier Scour,' National Cooperative Highway Research Program Report 653. Transportation Research Board of the National Academies. 2010.


http://il.water.usgs.gov/proj/nvalues/supplementary/pictures/Esopus2_XS.jpg Lagasse, P. F. et al, 'Effects of Debris on Bridge Pier Scour,' National Cooperative Highway Research Program

Dewberry

Report 653. Transportation Research Board of the National Academies. 2010.

- Debris Geometry & Channel Characteristics
- Flow Index
 - Current Discharges
 - Bankfull Discharges
- Sinuosity

Recurrence Interval Flow Threshold for Debris Transport?

- Debris Geometry & Channel Characteristics
- Flow Index

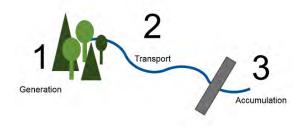
• Sinuosity

• Abrupt turns in smaller waterways near the bridge approach

- Debris Geometry & Channel Characteristics
- Flow Index

• Sinuosity

• Abrupt turns in smaller waterways near the bridge approach

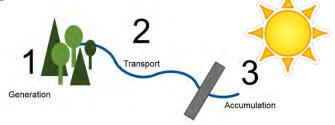


- Debris Geometry & Channel Characteristics
- Flow Index
- Sinuosity
 - Abrupt turns in smaller waterways near the bridge approach

#3: Accumulation

Impediments to flow:

- Piers & Abutments
 - Presence
 - Orientation
 - Span



Bradley, J.B. et al., 'Debris Control Structures Evaluation and Countermeasures,' Hydraulic Engineering Circular 9. US Department of Transportation, FHWA. October 2005.

Parola, A. 'Highway Infrastructure Damage Caused by the 1993 Upper Mississippi River Basin Flooding,' Transportation Research Board. 1998.

*Climate Variability

Name/description	Abbreviation	Reference
Climate models		
Beijing Normal University Earth System Model	BNU-ESM	Ji and others (2014)
Community Earth System Model with Biogeochemical Cycling Model, Version 1.0	CESM1-BGC	Lindsay and others (2014)
Centre National de Recherches Météorologique Climatological Model 5	CNRM-CM5	Voldoire and others (2012)
Institut Pierre Simon Laplace Climate Model 5A, Low-Resolution	IPSL-CM5A-LR	Dufresne and others (2013)
Norwegian Earth System Model, Intermediate Resolution	NorESM1-M	Bentsen and others (2013)
Greenhouse-gas emissions scenari	os	
Representative Concentration Pathway 4.5	RCP 4.5	Thomson and others (2011)
Representative Concentration Pathway 8.5	RCP 8.5	Riahi and others (2011)
Time periods		
Average from 2025 to 2049	2025-2049	USGS Climate Change Viewer
Average from 2050 to 2074	2050-2074	USGS Climate Change Viewer
Average from 2075 to 2099	2075-2099	USGS Climate Change Viewer

Science for a changing world

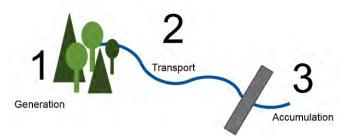
Prepared in cooperation with the New York State Department of Transportation

Development of Flood Regressions and Climate Change Scenarios To Explore Estimates of Future Peak Flows

USGS Future Flows tool

Analysis: Risk Factors

	Risk Factor	Name	Description	
2 1 Generation	SP	Stream Power	Hydraulic force working on channel banks	
1 Autor Generator	EF	Erodibility Factor	Soil erodibility potential	
2 Transport	LL/CW	Log Length vs. Channel Width Factor	Ratio of log length to channel width	
2 innusor	DRW/CD	Debris Root Width vs. Channel Depth Factor	Ratio of root mass diameter to channel depth	1 Transport
2 Transport	SI	Sinuosity Index	Degree of sinuosity of reach	Generation
2 restor	FI	Flow Index	Nearest return interval flow at calculated bankfull discharge	
Autoritation	Р	Piers	Presence and orientation of piers	
	FFI	Future Flow Index	Projected change in future flow	
	CRF	Climate Risk Factor	Climate induced change in risk	



3

Accumulation

Analysis: Weighting & Regression

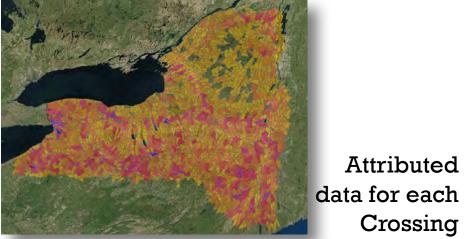
	Risk Factor	Name	Description
1	SP	Stream Power	Hydraulic force working on channel banks
1	EF	Erodibility Factor	Soil erodibility potential
2	LL/CW	Log Length vs. Channel Width Factor	Ratio of log length to channel width
2	DRW/CD	Debris Root Width vs. Channel Depth Factor	Ratio of root mass diameter to channel depth
2	SI	Sinuosity Index	Degree of sinuosity of reach
1	FI	Flow Index	Nearest return interval flow at calculated bankfull discharge
13	P	Piers	Presence and orientation of piers
1	FFI	Future Flow Index	Projected change in future flow
1	CRF	Climate Risk Factor	Climate induced change in risk

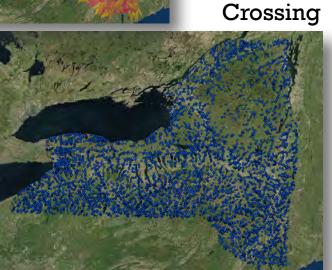
Regression Equation

$$DR = \left[1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}\right]^{-1}$$

DR = X₀ + a₁X₁ + a₂X₂ + ... + a_NX_N

Analysis: Validation & Calibration




		Risk Factor	Name	Description
	2 2 Crimatur	SP	Stream Power	Hydraulic force working on channel banks
		EF	Erodibility Factor	Soil erodibility potential
	2 transport	LL/CW	Log Length vs. Channel Width Factor	Ratio of log length to channel width
	2 Transport	DRW/CD	Debris Root Width vs. Channel Depth Factor	Ratio of root mass diameter to channel depth
	2 Transport	SI	Sinuosity Index	Degree of sinuosity of reach
ļ	2 Genedar	FI	Flow Index	Nearest return interval flow at calculated bankfull discharge
	Antres deten	Р	Piers	Presence and orientation of piers
	2 1 Generaliza	FFI	Future Flow Index	Projected change in future flow
	2 Transat	CRF	Climate Risk Factor	Climate induced change in risk

Final Products

HUC 12 Level Assessment

Attributed

Interactive Notebooks

100																
TAIt	4 (manual	(dist_fit	, bane	=111e)	asse, i	119C hame	-arac_11	st, bins=[2	5,200,01,	pazamete	Lol. rate	denre	Sector et	Ast Ust	1.1.1281
	name	10 Ality	nu/jetopainaens	Disclamin	nes/san											
	dist_nam		chi2													
	tims	-			50											
	paramete		hsig		1											
	Run	dist. fit														
	A chi-sq		_													
		mater of	Witzbadas	range	a vari											
		1.00				an and a										
	ch12 (df=	2.55, 1	se#3.11,	scale=	0.42)											
	cha2 (df=	2.55, 1					lata.csv	,			distributio					
		2.55, 1					lata.csv	,		0.2%	distributio - value: 8 - value: 7	14 meter				
	20	2.55, 1 7					lata.csv		10	0.2%	- value: 8	14 meter				
	20	2.55, 1					lata.csv		1.0	0.2%	- value: 8	14 meter			THIIII	
	20	2.55, 1					lata.csv		199	0.2%	- value: 8	14 meter				
	20	2.55, 1					lata.csv		199	0.2%	- value: 8	14 meter				
	20	2.55. 1					lata.csv		199	0.2%	- value: 8	14 meter				
	20	2.55. 1					lata.csv		199	0.2%	- value: 8	14 meter				
	20	2.53. 1					lata.csv		199	0.2%	- value: 8	14 meter				
	20	2.53. 1					lata.csv		199	0.2%	- value: 8	14 meter				
	quency of occurence	2.55. 1					lata.csv		ance Probability o o	0.2%	- value: 8	14 meter				
	20	2.55. 1					lata.csv		Exceedance Probability	0.2%	- value: 8	14 meter				
	20						latā.csv		Exceedance Probability	0.2%	- value: 8 - value: 7	14 meter			7	8

Outstanding Tasks

- Finalizing methodology
- Developing regression equations
- Validating methodology on test cases
- Individual and Total risk factor development for NY bridges and culverts
- Statewide application and HUC-12 based risk factor development
- Develop Updated Design Standards to Reduce Debris-caused Failure

Open Source Tools

