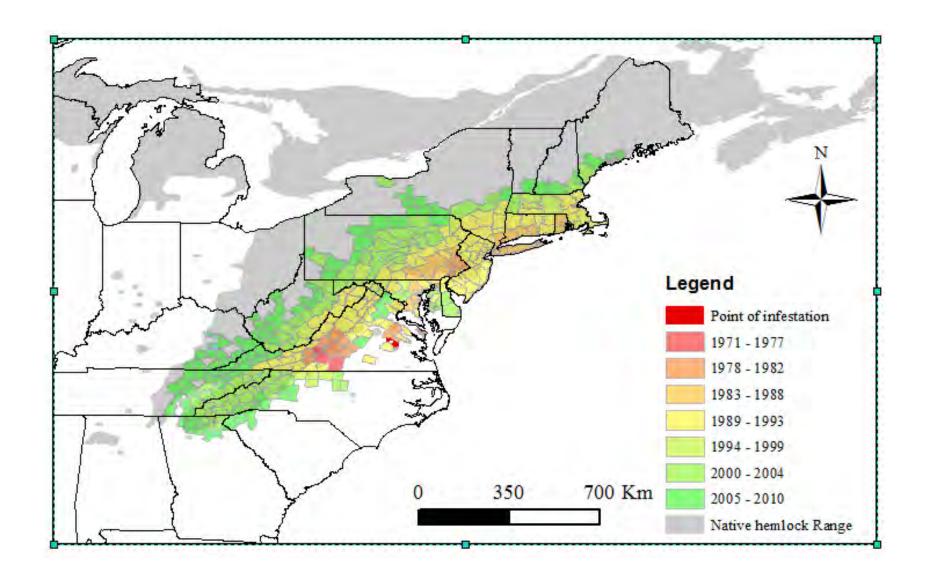
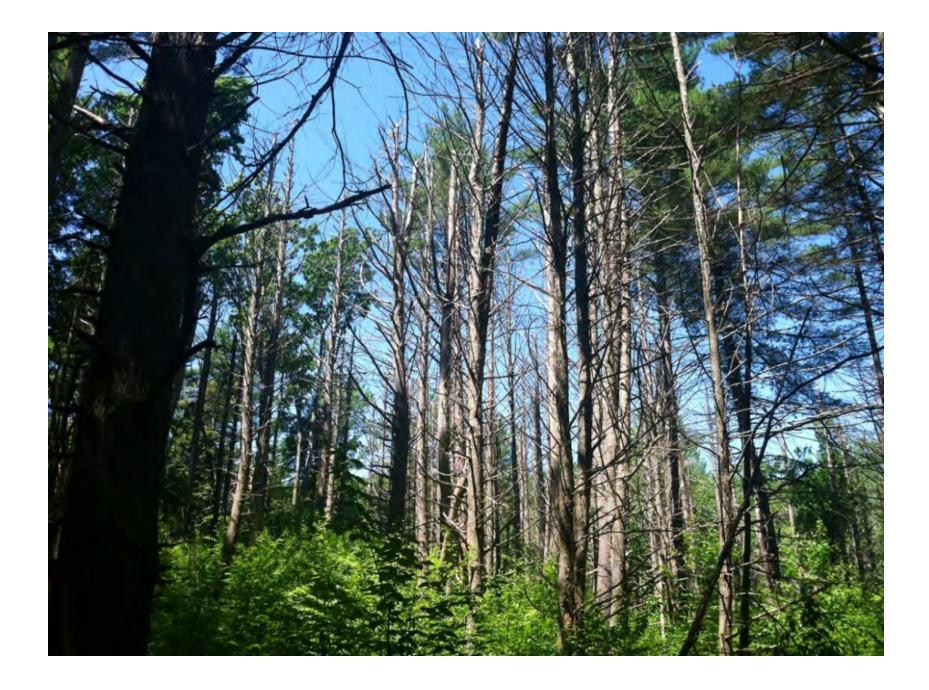
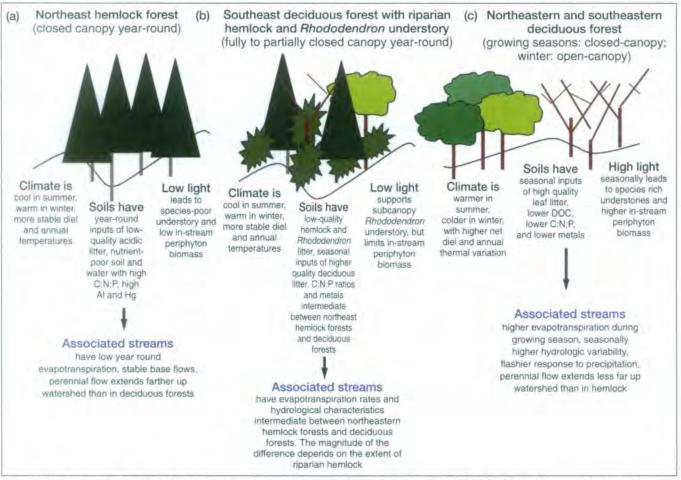
Large Wood in Central Appalachian Headwater Streams: Controls on and Potential Changes to Wood Loads from Infestation of Hemlock Woolly Adelgid


Katie Costigan¹, Paul Soltesz², Kristin Jaeger³
¹UL Lafayette

²Franklin County Soil and Water Conservation District ³USGS


Hemlock Wooly Adelgid



Hemlock forest trajectories

Figure 2. Conceptual model of shifts in terrestrial and aquatic ecosystem processes following loss of eastern hemlock from (a) northern and (b) southern forests, and (c) conversion to hardwood-dominated stands.

Loss of Foundation Species: Consequences for the Structure and Dynamics of Forested Ecosystems
Author(s): Aaron M. Ellison, Michael S. Bank, Barton D. Clinton, Elizabeth A. Colburn,
Katherine Elliott, Chelcy R. Ford, David R. Foster, Brian D. Kloeppel, Jennifer D. Knoepp,
Gary M. Lovett, Jacqueline Mohan, David A. Orwig, Nicholas L. Rodenhouse, William V,
Sobczak, Kristina A. Stinson, Jeffrey K. Stone, Christopher M. Swan, Jill Thompson,
Betsy Von Holle and Jackson R. Webster
Source: Frontiers in Ecology and the Environment, Vol. 3, No. 9 (Nov., 2005), pp. 479-486
Published by: Wiley
Stable URL: http://www.jstor.org/stable/3868635
Accessed: 24-10-2016 17:52 UTC

In-stream LW & HWA

Table V. Large wood loads from forested watersheds in eastern USA region^d

Location	n	A (km²)	Frequency (#/100m)		Wood volume (m³/100 m)	Wood volume (m³/m²)	Jams/100m	HWA present	Source
Central Appalachian Mountain Region	23	4.1	39	0.09	3.88	0.007	3	yes	This study
15 state region along eastern US extending from Alabama to Maine	47					0.004		yes	Evans et al., 2012
Adirondack Mountains, New York	1	7.4	35				3.2		Warren and Kraft, 2008
White Mountains, New Hampshire and Adirondack Mountains, New York	28	0.05	29		3.35	0.007	2.9		Warren et al., 2009
Connecticut	.5	5.2	16		3.15		5.2		Costigan and Daniels, 2013
Tennessee, Southern Appalachian Mountain Region	2	2.4				0.008; 0.034			Silsbee and Larson, 1983
North Carolina, Southern Appalachian Mountain Region	11	4.3			14.85				Hedman et al., 1996
Coweeta Hydrologic Laboratory, North Carolina, Southern Appalachian Mountain Region	8					0.016		yes	Webster et al., 2012

^aValues are averages over streams or rivers in each study (n). Values from Warren and Kraft (2008) are an average over a four-year monitoring period. Values from Costigan and Daniels (2013) are an average of the five of the seven streams in the study with drainage areas < 9 km². Values in Silsbee and Larson (1983) are for streams with logged and unlogged riparian areas, respectively. Values from Webster *et al.* (2012) are based on approximate LW estimates interpreted from a bar chart (Figure 5). Drainage area (A) of streams was not reported for Evans *et al.* (2012) nor Webster *et al.* (2012).

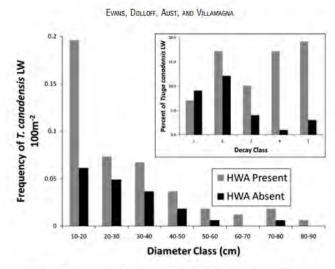


FIGURE 4. Large Wood (LW) by Diameter and Decay Classes With and Without Hemlock Wooly Adelgid (HWA) at 47 Streams From Maine to Alabama.

Daniel M. Evans, C. Andrew Dolloff, W. Michael Aust, and Amy M. Villamagna²

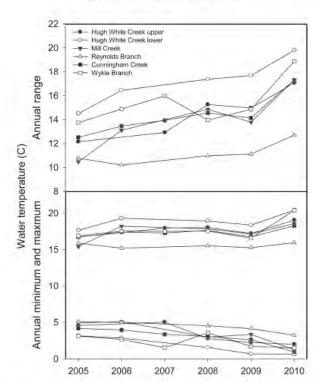


Fig. 1.—Upper panel: Trends over time in annual range in stream water temperature in small streams affected by hemlock death. Lower panel: Trends over time in annual minimum and maximum stream water temperatures

Effects of Hemlock Mortality on Streams in the Southern Appalachian Mountains

Author(s). J.R. Webster, K. Morkeski, C.A. Wojculewski, B.R. Niederlehner, E.F. Benfield, and K.J. Elliott Source: The American Midland Naturalist, 168(1):112-131 2012. Published By: University of Notre Dame URL: http://www.bioone.org/doi/full/10 1674/0003-0031-168.1.112

123

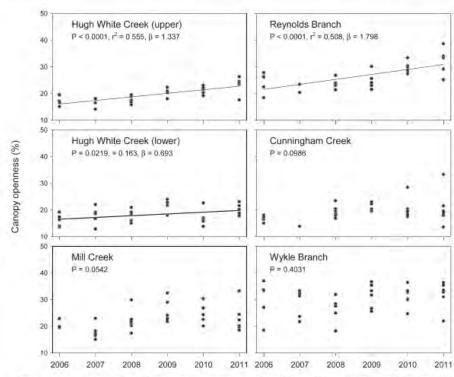


Fig. 4.—Linear regression of canopy openness over time for small streams affected by hemlock mortality. Each point is from a single photograph (β is slope of relationship)

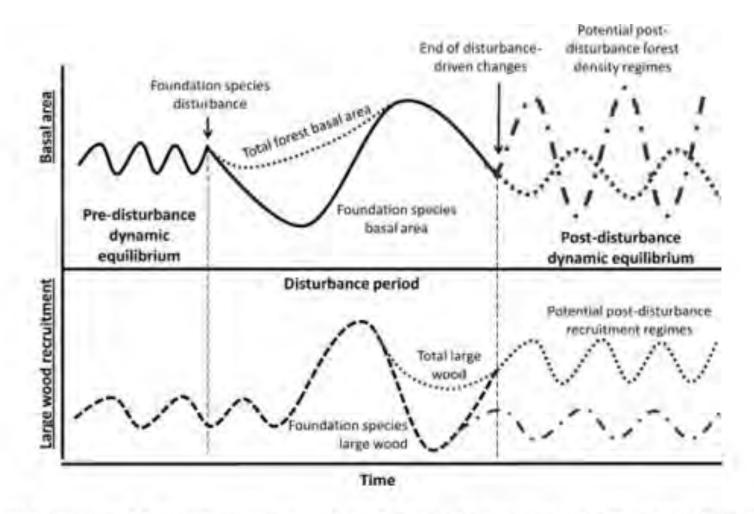
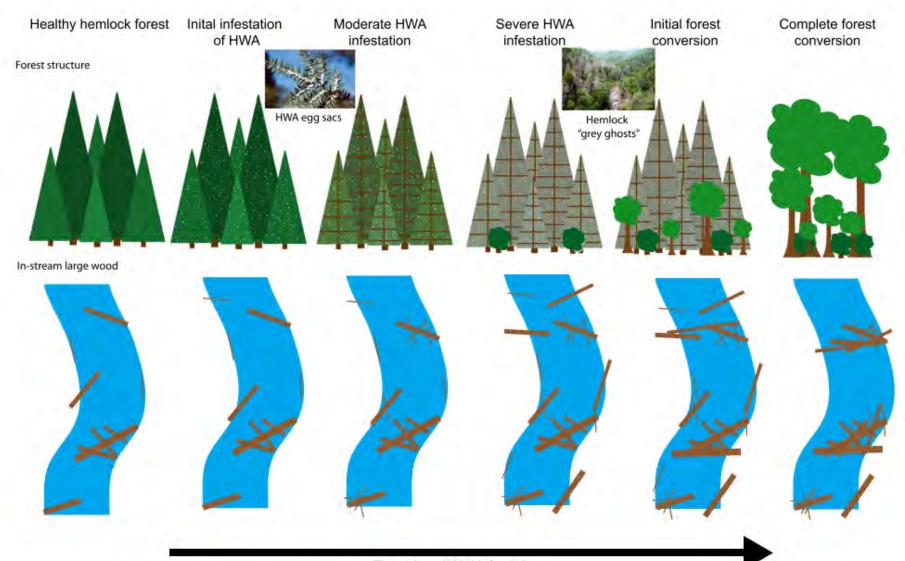
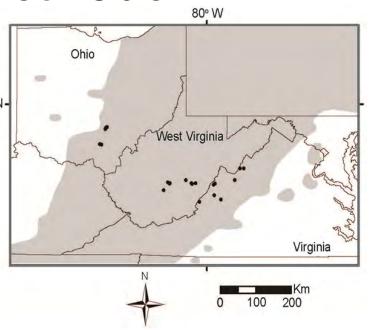
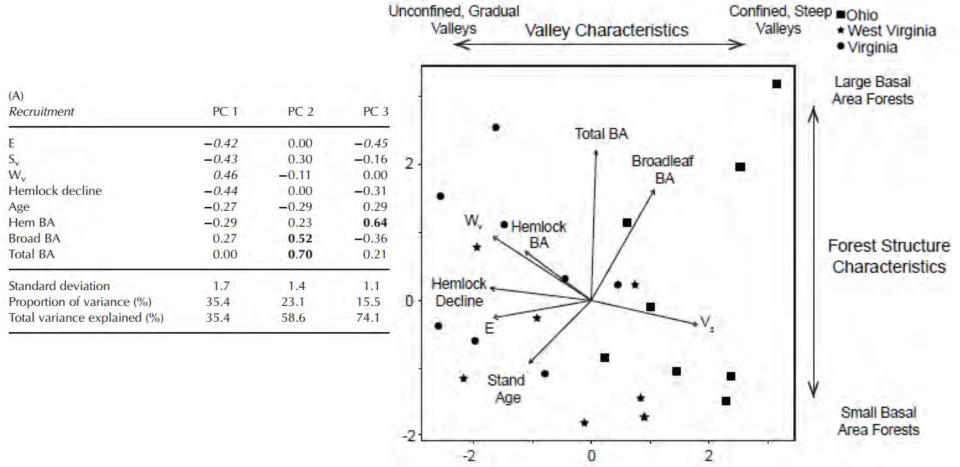



FIGURE 1. Conceptual Model Illustrating the Effects of an Episodic Disturbance to a Foundation Tree Species on Forest Basal Area (upper panel) and Instream Large Wood Recruitment (lower panel) Through Time.

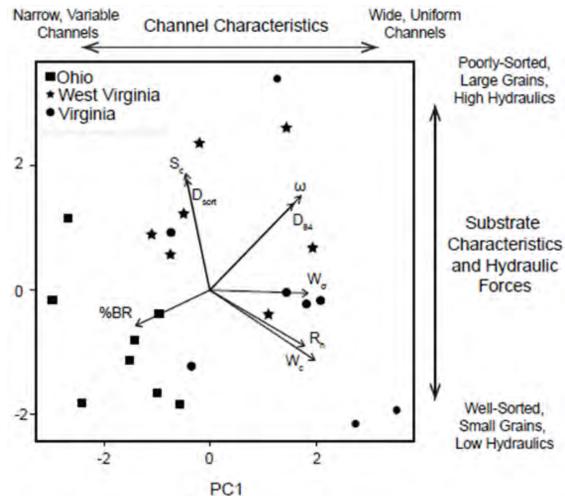

Conceptual framework

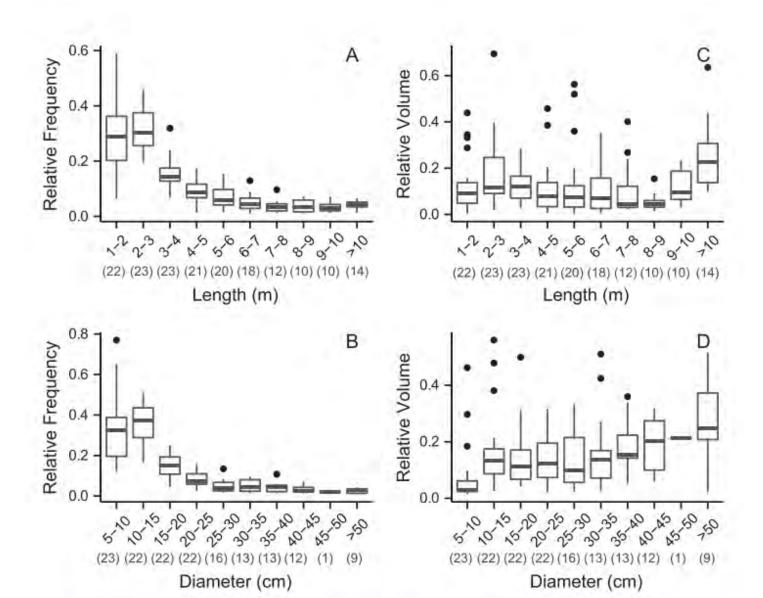
Study sites/Methods

• 24 sites; 8 in VA, WV, and OH

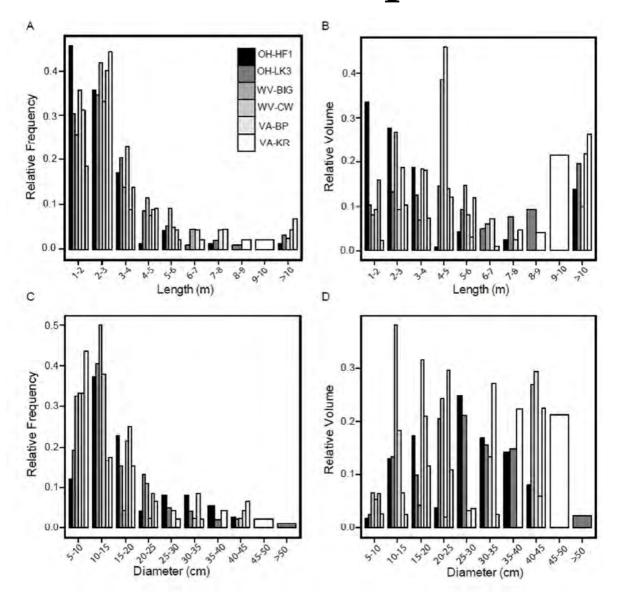

- Second or third-growth eastern hemlock forests
 - average stand age of 113years
- Standard wood survey
- PCA, MLR, ANOVA

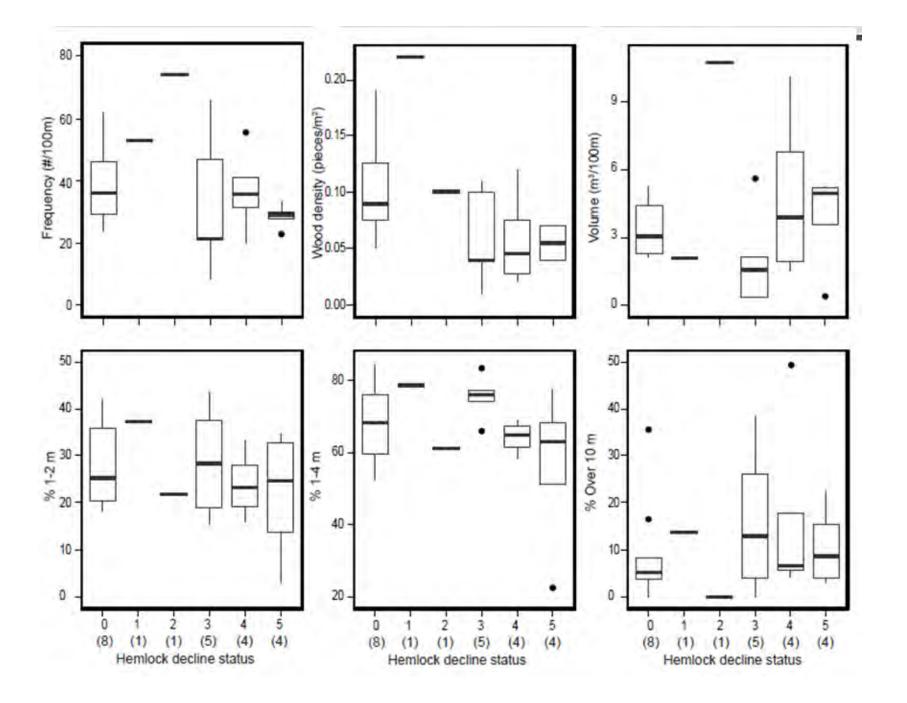
LW recruitment

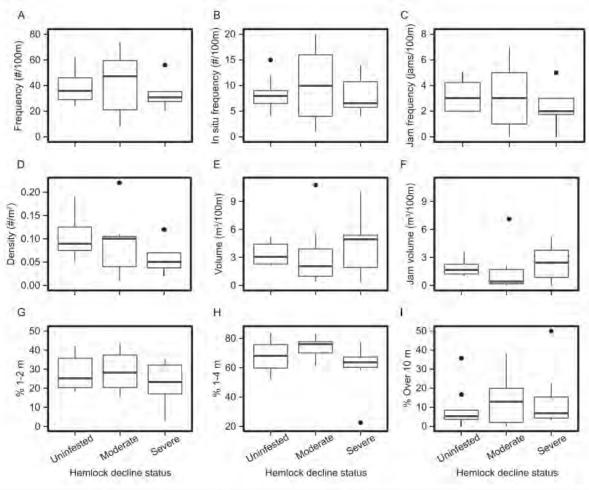

Attributes that introduce LW


LW retention

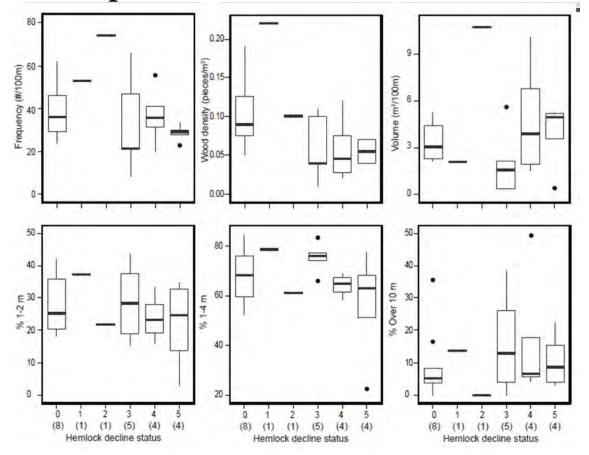
Attributes that keep in OR remove LW


Retention	PC 1	PC 2	PC 3
ω	-0.40	0.41	0.00
W _c	-0.46	-0.31	-0.17
W_{σ}	-0.43	0.00	0.44
Rh	-0.42	-0.25	-0.39
Sc	0.11	0.52	0.29
% BR	0.33	-0.16	-0.41
D ₈₄	-0.37	0.38	-0.34
D _{sort}	0.10	0.49	-0.51
Standard deviation	1.7	1.5	1.1
Proportion of variance (%)	37.8	27.3	14.3
Total variance explained (%)	37.8	65.1	79.4

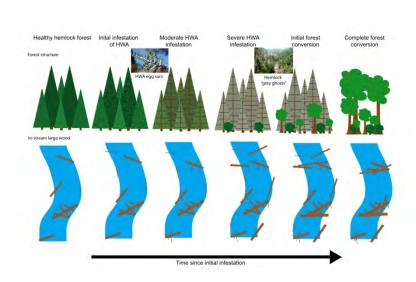



LW sizes and volumes

? HWA impacts?



	a	b	SE _b	R^2	F	<i>p</i> -value
LW frequency (#/100m)	40.709	-3.188	4.231	0.03	0.568	0.46
In situ frequency (#/100m)	8.951	-0.125	1.260	0.00	0.010	0.92
Jam frequency (#/100m)	3.370	-0.500	0.452	0.06	1.224	0.28
LW density (pieces/m ²)	0.107	-0.024	0.013	0.15	3.698	0.07
LW volume (m ³ /100m)	3.192	0.494	0.693	0.02	0.508	0.48
Jam volume (m ^{3/} 100m)	1.709	0.292	0.464	0.02	0.400	0.54
1-2 m (proportion)	29.190	-2.638	2.552	0.05	1.068	0.31
1-4 m (proportion)	70.854	-3.819	3.262	0.06	1.371	0.26
>10 m (proportion)	9.817	2.344	3.465	0.02	0.458	0.51


Take home messages?

- Signal of HWA impact is weak
 - Limited sample size?

Take home messages?

- Signal of HWA impact is weak
 - Limited sample size?
 - Not enough time—there is a potential lag time between toppling and recruitment

(B) Site	General site characteristics							
	Drainage area (km²)	Reach length (m)	Year infested with HWA	Flow regime	Hemlock decline status			
OH-BT	0.1	115		Intermittent	0			
OH-HF1	0.3	112	4	Intermittent	0			
OH-HF2	0.6	123	-	Intermittent	0			
OH-HF3	1.1	127	-	Perennial	0			
OH-LK1	0.2	186	-	Perennial	0			
OH-LK2	0.1	142	-	Intermittent	0			
OH-LK3	0.5	190	-	Perennial	0			
OH-SH	1.6	142		Perennial	0			
VV-BEAR	8.4	148	1998	Perennial	2			
VV-BIG	1.7	99	1998	Perennial	3			
VV-BSR	5	112	2002	Perennial	3			
VV-CF1	0.6	86	2002	Intermittent	1			
VV-CF2	0.3	97	2002	Intermittent	1			
VV-CW	0.4	116	1993	Perennial	4			
AV-MBR	4.4	109	2002	Perennial	3			
VV-WC	6.1	116	2002	Ephemeral	3			
VA-BC1	2	95	1993	Intermittent	5			
/A-BC2	2.3	108	1993	Perennial	5			
/A-BP	3.6	120	1991	Perennial	4			
/A-JR	19.1	190	1991	Perennial	4			
/A-KR	8.4	128	1991	Ephemeral	5			
VA-LPWC	9.7	115	1993	Perennial	4			
VA-SC	10.2	160	1991	Perennial	.5			
/A-SF	11.2	169	1991	Perennial	3			
Average	4.1 (4.9)	130 (31)						

