

How Effective Are Sediment and Turbidity Reduction Projects in the Stony Clove Creek Watershed?

CATSKILL ENVIRONMENTAL RESEARCH MONITORING CONFERENCE OCTOBER 27, 2016

Danyelle Davis (NYCDEP)

Jason Siemion (USGS)

Michael R McHale (USGS)

Ashokan Reservoir

Ashokan Reservoir Watershed

Turbidity in the Ashokan Watershed

Sources of Turbidity

Sedimentation process (Modified from EPA,1999)

Esopus Creek Watershed Turbidity

Stony Clove Creek as a Chronic Turbidity Source

Understanding Watershed Hydrology

Esopus Creek Peak Flow Record

Stony Clove Creek Hydrology: Temporal Variability

Stream Channel Geomorphic Response

Geomorphic and Geologic Investigations

GPS-Based Stream Feature Inventories

Monitoring bank erosion at sediment source sites

Channel morphology surveys

Geologic investigations to work out glacial stratigraphy

Stony Clove Watershed: Streambank Erosion

Stony Clove Watershed: Non-Alluvial SS Sources

Defining Sedimentologic Units

Relating Geomorphology to SSC

Stony Clove Chichester Sites 2 & 3 pre-construction

Stony Clove Watershed: Stream Projects 2011 - 2015

Stony Clove Chichester Sites 2 & 3 pre-construction

Stony Clove Chichester Sites 2 and 3 post-construction

New Esopus Watershed Ten Year Monitoring Study

- NYCDEP-USGS collaboration
- Tributary and mainstem turbidity and suspended sediment monitoring
- Macro-reach scale monitoring in Stony Clove watershed

Research Questions:

- 1. What geologic/geomorphic conditions and processes produce the most sediment and turbidity across a range of flows?
- 2. What associated reach-scale metrics can we use to predict suspended sediment yield and turbidity?
- 3. Can we improve our ability to select stream restoration project sites to maximize potential sediment and turbidity reduction?
- 4. To what extent can suspended sediment yield and turbidity associated with these sources, channel conditions and processes be managed within the stream system?
- 5. Over what range of flows, spatial and temporal scales can we measure a reduction in turbidity and suspended sediment load in Stony Clove Creek?

Esopus Creek and Tributary Monitoring Sites

Stony Clove Creek Monitoring Sites

Techniques

- 15 min turbidity → 15 min SSC
- 15 min SSC → Mean Daily SSC
- SSC x Streamflow = Daily Loads
- Relate SSC to streamflow, geomorphology, test effectiveness of STRP, sediment finger printing, etc.

Sediment and Turbidity Reduction Projects in Stony Clove Creek

Sediment and Turbidity Reduction Projects in Warner Creek

Summary

This set of turbidity/suspended sediment monitoring and source studies will enable NYCDEP to

- evaluate the production processes and conditions that influence the spatial and temporal variation in suspended sediment yield; and
- evaluate the effectiveness of turbidity reduction strategies through STRPs at the reach, sub-basin and reservoir basin scale to better inform future investment in stream restoration targeted to reduce turbidity.

Project Schedule

- ❖ November, 2014: DEP submits FAD deliverable describing proposed approach to evaluating distribution of turbidity sources in the Ashokan watershed and to evaluate stream project effectiveness in reducing turbidity.
- ❖ July 7, 2016: DEP-USGS contract start date
- ❖ August October 2016: USGS instruments existing upper Esopus Creek watershed gages and establishes new Esopus Creek gage in Oliverea.
- ❖ September November 2016: USGS establishes new Stony Clove Creek watershed monitoring stations.
- ❖ Fall 2016 Fall 2026: USGS initiates/continues water quality monitoring
- ❖ Fall 2016 Summer 2026: DEP continues geomorphic monitoring.
- Summer 2020: AWSMP resumes Stony Clove stream projects after baseline monitoring informed site selection.
- ❖ Fall 2027: Study complete

Thank You

