Kuk-Hyun (Keith) Ahn Scott Steinschneider

Time-varying suspended sedimentdischarge rating curves to estimate climate impacts on fluvial sediment transport in the Esopus Watershed

Introduction

$$logTn_t = \beta_0 + \beta_1 \times logQ_t + \varepsilon_t$$

Cornell University

Objectives of the presentation

- 1. Understand how the Esopus Creek rating curve has evolved over time
- 2. Model the underlying causes of timevarying rating curve behavior to support long-term simulation studies

Objective 1

☐ Understand how rating curve has varied in the past (Dynamic Linear Models)

$$\log T n_t = \frac{\beta_{0_t}}{\beta_{0_t}} + \beta_1 \log Q_t + \varepsilon_t \qquad \varepsilon_t \sim \mathcal{N}\left(0, \sigma_\varepsilon^2\right)$$

$$\begin{array}{c} \text{Coefficient is a} \\ \text{random walk} \end{array}$$

$$\beta_{0_t} = \beta_{0_{t-1}} + w_t \qquad w_t \sim \mathcal{N}\left(0, \sigma_w^2\right)$$

Time-varying intercept

Extreme floods

Expanding outside the Esopus

Particle filters for dynamic non-linear modeling

 $\forall \widetilde{Q_t} < \widetilde{Q^*}$

$$\log S_t = \begin{cases} \beta_0 + \beta_1 \log \widetilde{Q_t} + \varepsilon_{1,t} \\ \\ \beta_0 + \beta_1 \log \widetilde{Q^*} + \beta_2 (\log \widetilde{Q_t} - \log \widetilde{Q^*}) + \varepsilon_{2,t} \end{cases}$$

Expanding outside the Esopus

Objective 2

☐ Develop a time-varying rating curve model for future

Methodology

Dynamic Linear Model (DLM) for SSC-Tn Relationship

$$\log SSC_t = \theta_{0,t} + \theta_1 log T_{n_t} + \varepsilon_t \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon^2)$$

$$\theta_{0,t} = \theta_{0,t-1} + w_t$$
 $w_t \sim \mathcal{N}(0, \sigma_w^2)$

Inter-Model Comparison

Model	Model Equation	Time-varying Intercept
M_1	$\log rSSC_t = \beta_0 + \beta_1 \log Q_{w_t} + \beta_2 \sin(2\pi i_t) + \beta_3 \cos(2\pi i_t) + \varepsilon_t$	No
M_2	$\log rSSC_t = \beta_0 + \beta_1 \log Q_w + \beta_2 \sin(2\pi i_t) + \beta_3 \cos(2\pi i_t) + \beta_4 \log \widehat{Q_{s_{t-1}}} + \varepsilon_t$	No
M_3	$\log rSSC_t = \beta_0 + \beta_1 \log Q_w + \beta_2 \sin(2\pi i_t) + \beta_3 \cos(2\pi i_t) + \beta_5 \frac{d \log Q_{w_t}}{dt} + \varepsilon_t$	No
M_4	$\log rSSC_t = \beta_0 + \beta_{0,t-1}^* + \beta_1 \log Q_{w_t} + \beta_2 \sin(2\pi i_t) + \beta_3 \cos(2\pi i_t) + \varepsilon_t$	Yes
M_5	$\log rSSC_{t} = \beta_{0} + \beta_{0,t-1}^{*} + \beta_{1}\log Q_{w_{t}} + \beta_{2}\sin(2\pi i_{t}) + \beta_{3}\cos(2\pi i_{t}) + \beta_{4}\log \widehat{Q_{s_{t-1}}} + \varepsilon_{t}$	Yes
M_6	$\log rSSC_t = \beta_0 + \beta_{0,t-1}^* + \beta_1 \log Q_{w_t} + \beta_2 \sin(2\pi i_t) + \beta_3 \cos(2\pi i_t) + \beta_5 \frac{d \log Q_{w_t}}{dt} + \varepsilon_t$	Yes

$$\beta_{0,t}^* = \varphi_1 \beta_{0,t-1}^* + \varphi_{2,t} (log Q_{w_t} - log Q_{threshold})$$

$$\varphi_{2,t} = \begin{cases} 0 & \forall \ Q_{w_t} < Q_{threshold} \\ \gamma & \forall \ Q_{w_t} \ge Q_{threshold} \end{cases}$$

Performance During and After Extreme Events

Peaks-Over-Threshold

Thank You

Validating the DLM for SSC-Tn

FIGURE 5 Two dimensional histograms between reconstructed suspended-sediment concentration (rSSC) and modelled suspended-sediment concentration (SSC) estimated by (a) M_1 , (b) M_2 , (c) M_3 , (d) M_4 , (e) M_5 , and (f) M_6

FIGURE 6 Hysteresis loops for model estimated suspended-sediment concentration (SSC; red) and reconstructed suspended-sediment concentration (black)

FIGURE 9 Climate response surfaces of the ratio of $\overline{SSC_{max}}$ between M₆ for a given climate scenario and the value of $\overline{SSC_{max}}$ under historical conditions (red cross). The responses are averaged over 50 simulations. Coupled Model Intercomparison Project Phase 5 precipitation and temperature projections (white circles) are also shown