Variations in Water Temperature and Implications for Trout Populations in the Upper Schoharie Creek & West Kill, 2010-12

Barry Baldigo, Scott George, and Martyn Smith, USGS New York Water Science Center Donald McKeown, Jason Faulring, Rochester Institute of Technology

Objectives

- Increase knowledge of thermal conditions, so as to more effectively manage natural resources in the Basin.
- Specific goals were to document:
 - a. contemporary thermal conditions,
 - b. temporal and spatial variations in water temperatures,
 - c. availability of thermal refuges, and
 - d. implications for resident trout.

Approach

- Temporal data obtained from 7 fixed temperature loggers operated for 12 to 24 months.
- Spatial data obtained from a single Thermal Infrared (TIR) flight (and fixed loggers).
- Thermal data from fixed loggers were compared to optimal growth and survival thresholds for brown trout to:
 - a. estimate temporal limitations for each site,
 - b. calibrate (and add temporal context to) the TIR data, and
 - c. roughly identify spatial limitations across the study area.
- Thermal data from TIR flight were used to:
 - a. detect the cool-water refuges and
 - b. characterize the spatial distribution of suitable and unsuitable stream temperatures.

Fixed loggers

Fixed Loggers

Fixed loggers: Temporal variations

Fixed-logger temperatures (June-Aug)

	Summer 2011			Summer 2012		
Site	Mean (°C)	No. days exceeding 1-d (25.3°C) threshold	No. days exceeding 7-d (23.3°C) threshold	Mean (°C)	No. days exceeding 1-d (25.3°C) threshold	No. days exceeding 7-d (23.3°C) threshold
sch1	21.1	4	21	22.9	18	54
sch2	21.1	4	22	22.7	15	51
sch4	20.3	4	13	22.3	8	41
sch5	20.8	4	16	22.5	13	44
sch6	20.3	4	14	22.1	5	41
sch7	17.6	0	2	19.3	0	0
wes1	18.3	0	2	20.2	0	7

Thresholds from: Wehrly, K.E., Wang, L.Z., and Mitro, M., 2007, Field-based estimates of thermal tolerance limits for trout: Incorporating exposure time and temperature fluctuation: TAFS, v. 136, no. 2, p. 365-374

RIT Airborne Sensor System

WASP captures a sequence of frames which form a mosaic in each of 3 IR bands and RGB

Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology

TIR: Spatial and basin variations

TIR: River and refuge summary

Total of 769,268 m² river surface area imaged;

only 0.02% (126 m²) was > 1.0 °C cooler,

- only 0.002% (14 m²) was more than 2.0 °C cooler,
- and 0% was more than 3.0 °C cooler than the median river temperature at the thalwag.

Conclusions

- Summer temperatures are unsuitable for trout growth throughout the basin.
- Summer temperatures are unsuitable for trout survival at most main-stem reaches.
- No high quality cold-water refuges were detected in both study reaches.
- Trout should be in poor condition and not survive hot summers at most main-stem reaches.
- Tributaries have to be critical trout-source areas.
- More extensive fishery data are needed to:
 - a. fully define trout health and survival issues,
 - b. define critical areas/tributaries to protect,
 - c. create a contemporary fishery baseline, and
 - d. assess/detect future changes in local fisheries.

