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Overview of Presentation

• Hyporheic exchange

• Studies on stream restoration, especially about 
hydraulic gradients and river stage

• Our research

• Future research and implications on hyporheic 
exchange



Hyporheic Exchange Overviewyp g
• Boulton et. al., 1998 :
▫ Hyporheic Zone: an “active ecotone between the yp

surface stream water and groundwater”
▫ Hyporheic Exchange: the “exchanges of water, 

nutrients, and organic matter occur [in the hyporheic , g yp
zone] in response to variations in discharge and bed 
topography and porosity” hydraulic head
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Hyporheic Exchange Overviewyp g
Functions commonly associated with: 

Lateral hyporheic exchangeVertical hyporheic exchange

• Lotic habitat
▫ Invertebrates & macroinvertebrates

Fi h

• Nutrient cycling
▫ Consumption & transformation by 

microbes

Lateral hyporheic exchangeVertical hyporheic exchange

▫ Fish

• Nutrient cycling
▫ Consumption & transformation by microbes 

▫ Oxygen and energy cycling

microbes

▫ Oxygen and energy cycling 

• Pollutant buffering
▫ Sink for hard metals and hydrocarbons yg gy y g

• Pollutant buffering
▫ Sink for hard metals and hydrocarbons 

• Temperature regulation
▫ Surface water vs. groundwater

▫ Habitat quality, especially during low flow

▫ Constraint on biogeochemical reactions



Stream Restoration Research
• Vertical hyporheic exchange:
▫ Hydraulics:Hydraulics:

Crispell and Endreny, 2009:  Batavia Kill, NY
Hester and Doyle, 2008:  simulation models, flume tests, 
field experiments in Craig Creek (small mountain stream) field experiments in Craig Creek (small mountain stream) 
near Blacksburg, VA 

▫ Biogeochemistry:
Lautz and Fanelli  2008:  3rd order Red Canyon Creek in Lautz and Fanelli, 2008:  3 order Red Canyon Creek in 
Lander, WY (semi-arid watershed)

• Lateral hyporheic exchange:
▫ Hydraulics and Biogeochemistry:▫ Hydraulics and Biogeochemistry:

Kasahara and Hill, 2007:  2 lowland stream reaches of 
Boyne River, Ontario, CA (intensive agri. watershed) 



Science Question

How do in-channel stream restoration structures 
ffaffect:

- the hydraulic gradients in the stream channel and 
across the stream meander bend  andacross the stream meander bend, and

- the intra-meander water table level?

Use methodologies that will provide:
1) direct comparisons between channels with structures and channels 

ith t t t  dwithout structures, and
2) fine resolution of observation data at the scale of a stream meander.



Methods: Laboratory Experiments
Stream Channel Dimensions:

- Width to Depth ratio:  7 to 11

- Sinuosity:  1.9 Radius of Curvature:  26 cmy

- Channel slope:  1% Valley slope: 1.5%

- D50:  0.2 mm nno struct = 0.004 nstruct = 0.021

- Initial channel:  flat bed morphology

Experimental Runs:

- Discharge:  51 ml/s   (~30% of channel capacity)

- Flow Duration:  7 hr

- 3 replications of channel without structures

- 4 replications of channel with 6 J-hooks and 1 cross-vane

Close-Range Photogrammetry:

di i l d f- 2 NIKON D5100 digital cameras  mounted 1.3 m from 
sand surface

- Digital photos taken of initial channel, river stage at 7 hr
of flow, and channel after 12+ hr of no flow

22%
20%10-11%

14%

- Floating white wax powder (0.3 mm diameter) indicated 
river stage and well water level

- Elevation values referenced to 5 control points surveyed 
by ultrasonic distance sensors (0.2 mm precision)

22%

20%



Methods: Post-Processing

Import DEMs in ArcGIS

Using ADAM Tech 3DM Analyst: Using ESRI ArcGIS:

Convert TINs into Rasters

Convert DEMs into TINs

Obtain cross-section profiles with 3D Analyst 
extension

E t ti  fil  d t  i t  E l f  

- Hydraulic gradients

Analysis of variance on:

Export cross-section profile data into Excel for 
calculations

(Diagram courtesy of Bangshuai Han)

Hydraulic gradients
- Water table levels   
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stage that is upstream of the structures.

- Backwater from damming effect
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Hydraulic Gradient between US and DS River Stage

840

Having structures in the channel raised the 
river stage hydraulic gradient across the 
meander:

neck by 0 94%

830

m
m

)

- neck by 0.94%

- center by 1.39%

- apex by 0.12%

820

E
le

v
a

ti
o

n
 (

m

Neck w/o structures

Neck with structures

The river stage hydraulic gradients 
of channels with structures and 
those of channels without structures 

810

Neck with structures

Center w/o structures

Center with structures

Apex w/o structures

those of channels without structures 
are statistically different 
(p=0.0002).

800

Apex w/o structures

Apex with structures

n
e

c

ce
n

t

a
p

eUS river stage DS river stage ckte
r

e
x

The structures affected the hydraulic gradient across the 
meander locations disproportionately (p<0.0001).

g g



Intra-Meander Cross-Sections

Having structures in the channel increased the water table throughout the 
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The water level of the circled wells was statistically different:
- between channels with structures and those without structures 
( )  d 

The water level of these wells was: 
- marginally different between channels with structures and 
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(p=0.0057), and 
- across meander locations (neck, center, apex) (p<0.0001).

those without structures  (p=0.0797), and
- statistically different across meander locations (p<0.0001).

The structures impacted these wells’ water level 
disproportionately across meander locations (p=0.0001)

The structures did NOT impact these well water levels 
disproportionately across meander locations (p=0.2889).



Hydraulic Gradient between US and DS River Stage
during twice normal discharge
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Result Summaryy

• In-stream restoration structures can locally raise the river stage In stream restoration structures can locally raise the river stage 
upstream of where they are installed.  
▫ Cross-vanes can cause more backwater than J-hooks. 

Th  i  f i t d  h d li  di t  d t  • The increase of intra-meander hydraulic gradients and water 
table levels by in-channel stream restoration structures is most 
pronounced at the intra-meander areas closest to the structures.  
▫ There is marginal water table level increase in the middle of the 

meander bend.

• The structures do not appear to further increase hydraulic pp y
gradients under higher stream flow.



Implications on Hyporheic Exchange

• Steep hydraulic gradients in riparian areas 
closest to the structures could indicate areas of closest to the structures could indicate areas of 
induced lateral hyporheic exchange. 
▫ Potential biogeochemical hotspots in the intra-Potential biogeochemical hotspots in the intra

meander zones.
• Larger stream flow in channels with restoration 

structures could induce more vertical hyporheic 
exchange due to higher hydraulic head.



Future Research

• More laboratory experiments to obtain observation data on More laboratory experiments to obtain observation data on 
hyporheic exchange flux and pathways in the stream channel 
and intra-meander zone.

R n e periments at different stream discharges and channel ▫ Run experiments at different stream discharges and channel 
restoration designs. 

• MODFLOW modeling to simulate and predict hyporheic 
h  fl  d hexchange flux and pathways.

▫ DEMs generated by our research process can provide fine 
resolution observation data of ground and water surfaces as 
MODFLOW boundary conditions. 
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