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Overview of Presentation

- Hyporheic exchange

- Studies on stream restoration, especially about
hydraulic gradients and river stage

e OQur research

- Future research and implications on hyporheic
exchange
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Hyporheic Exchange Overview

» Boulton et. al. 1998'

= Hyporheic Zone an “active ecotone between the
surface stream water and groundwater”

= Hyporheic Exchange: the “exchanges of water,
nutrients, and organic matter occur [in the hyporhelc
zone] in response to variations in discharge and bed

topography and porosity” ., hydraulic head
Riffle Pool Riffle B
Vertical
hyporheic
Lateral - exchange
hyporheic Flow } .\‘:-.-_.-r =
exchange direction T

Figure from Hester and Gooseff, 2010
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Hyporheic Exchange Overview

Functions commonly associated with:

Lotic habitat

Invertebrates & macroinvertebrates
Fish

Nutrient cycling
Consumption & transformation by microbes

Oxygen and energy cycling
Pollutant buffering

Sink for hard metals and hydrocarbons

Temperature regulation
Surface water vs. groundwater
Habitat quality, especially during low flow
Constraint on biogeochemical reactions

« Nutrient cycling

Consumption & transformation by
microbes

Oxygen and energy cycling
 Pollutant buffering

Sink for hard metals and hydrocarbons
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Stream Restoration Research

- Vertical hyporheic exchange:
« Hydraulics:
» Crispell and Endreny, 2009: Batavia Kill, NY

-+ Hester and Doyle, 2008: simulation models, flume tests,
field experiments in Craig Creek (small mountain stream)
near Blacksburg, VA

= Biogeochemistry:
- Lautz and Fanelli, 2008: 3" order Red Canyon Creek in
Lander, WY (semi-arid watershed)

- Lateral hyporheic exchange:

» Hydraulics and Biogeochemistry:

- Kasahara and Hill, 2007: 2 lowland stream reaches of
Boyne River, Ontario, CA (intensive agri. watershed)
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Science Question

How do in-channel stream restoration structures
affect:

- the hydraulic gradients in the stream channel and
across the stream meander bend, and

- the Intra-meander water table level?

Use methodologies that will provide:
1) direct comparisons between channels with structures and channels

without structures, and
2) fine resolution of observation data at the scale of a stream meander.



Methods: Laboratory Experiments

Stream Channel Dimensions:

Width to Depth ratio: 7to 11

Sinuosity: 1.9 Radius of Curvature: 26 cm
Channel slope: 1% Valley slope: 1.5%
D.,: 0.2 mm N, struct = 0.004 Ny yet = 0.021

Initial channel: flat bed morphology

Experimental Runs:

Discharge: 51 ml/s (~30% of channel capacity)
Flow Duration: 7 hr
3 replications of channel without structures

4 replications of channel with 6 J-hooks and 1 cross-vane

Close-Range Photogrammetry:

2 NIKON D5100 digital cameras mounted 1.3 m from
sand surface

Digital photos taken of initial channel, river stage at 7 hr
of flow, and channel after 12+ hr of no flow

Floating white wax powder (0.3 mm diameter) indicated
river stage and well water level

Elevation values referenced to 5 control points surveyed
by ultrasonic distance sensors (0.2 mm precision)



Methods: Post-Processing

Using ADAM Tech 3DM Analyst: Using ESRI ArcGIS:
Bl Import DEMs in ArcGIS
| Capture Images I l
| Determine Imrjge Orientation | Convert DEMs into TINs
|
/ Readin Ca“fraﬁon Data / Convert TINs into Rasters
|Generate Common Pointsl l
[ Add Scalar Bars :n d Control Paints | Obtain cross-section profiles with 3D Analyst
extension

8 v

|Exterior Orientation&Bundle Adjustmentl
Export cross-section profile data into Excel for

S S| Lo cleatons
es
| Generate DEM l . .
T Analysis of variance on:
C End . - Hydraulic gradients
- Water table levels

(Diagram courtesy of Bangshuai Han)
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Longitudinal Profile of River Stage at the Channel Centerline
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Having structures in the channel, especially the cross-vane, raised the river
stage that is upstream of the structures.

- Backwater from damming effect



Hydraulic Gradient between US and DS River Stage
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The structures affected the hydraulic gradient across the
meander locations disproportionately (p<0.0001).
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Intra-Meander Cross-Sections

Having structures in the channel increased the water table throughout the

870 - neck intra-meander zone, especially in the upstream half of the bend.
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Wells near structures Wells at meander center
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The water level of the circled wells was statistically different: The water level of these wells was:
- between channels with structures and those without structures - marginally different between channels with structures and
(p=0.0057), and those without structures (p=0.0797), and
- across meander locations (neck, center, apex) (p<0.0001). - statistically different across meander locations (p<0.0001).
The structures impacted these wells’ water level The structures did NOT impact these well water levels

disproportionately across meander locations (p=0.0001) disproportionately across meander locations (p=0.2889).
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Hydraulic Gradient between US and DS River Stage
during twice normal discharge
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When discharge was doubled in
channels with structures:

- river stage increased with similar
magnitude throughout the
channel, and

- hydraulic gradients across the
meander bend remained
relatively unchanged.
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US river stage

Normal Q = 51 ml/s

DS river stage




Result Summary

In-stream restoration structures can locally raise the river stage
upstream of where they are installed.

o Cross-vanes can cause more backwater than J-hooks.

The increase of intra-meander hydraulic gradients and water
table levels by in-channel stream restoration structures is most
pronounced at the intra-meander areas closest to the structures.

= There is marginal water table level increase in the middle of the
meander bend.

The structures do not appear to further increase hydraulic
gradients under higher stream flow.



Implications on
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yporheic Exchange

» Steep hydraulic gradients in riparian areas
closest to the structures could indicate areas of
induced lateral hyporheic exchange.
= Potential biogeochemical hotspots in the intra-

meander zones.

- Larger stream flow in channels with restoration
structures could induce more vertical hyporheic
exchange due to higher hydraulic head.

L
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Future Research

- More laboratory experiments to obtain observation data on
hyporheic exchange flux and pathways in the stream channel
and intra-meander zone.

= Run experiments at different stream discharges and channel
restoration designs.

- MODFLOW modeling to simulate and predict hyporheic
exchange flux and pathways.

» DEMs generated by our research process can provide fine

resolution observation data of ground and water surfaces as
MODFLOW boundary conditions.
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