Examining Higher Hydraulic Gradients in Restored Streams and the Implications on Hyporheic Exchange

Hong-Hanh Chu and Dr. Ted Endreny, Department of Environmental Resources Engineering, SUNY ESF

Overview of Presentation

- Hyporheic exchange
- Studies on stream restoration, especially about hydraulic gradients and river stage
- Our research
- Future research and implications on hyporheic exchange

Hyporheic Exchange Overview

- Boulton et. al., 1998:
 - Hyporheic Zone: an "active ecotone between the surface stream water and groundwater"
 - Hyporheic Exchange: the "exchanges of water, nutrients, and organic matter occur [in the hyporheic zone] in response to variations in <u>discharge</u> and bed topography and porosity"

Figure from Hester and Gooseff, 2010

Hyporheic Exchange Overview

Functions commonly associated with:

Vertical hyporheic exchange

Lotic habitat

- Invertebrates & macroinvertebrates
- Fish

Nutrient cycling

- Consumption & transformation by microbes
- Oxygen and energy cycling

Pollutant buffering

Sink for hard metals and hydrocarbons

Temperature regulation

- Surface water vs. groundwater
- Habitat quality, especially during low flow
- Constraint on biogeochemical reactions

Lateral hyporheic exchange

- Nutrient cycling
 - Consumption & transformation by microbes
 - Oxygen and energy cycling
- Pollutant buffering
 - Sink for hard metals and hydrocarbons

Stream Restoration Research

- Vertical hyporheic exchange:
 - Hydraulics:
 - · Crispell and Endreny, 2009: Batavia Kill, NY
 - Hester and Doyle, 2008: simulation models, flume tests, field experiments in Craig Creek (small mountain stream) near Blacksburg, VA
 - Biogeochemistry:
 - Lautz and Fanelli, 2008: 3rd order Red Canyon Creek in Lander, WY (semi-arid watershed)
- Lateral hyporheic exchange:
 - Hydraulics and Biogeochemistry:
 - Kasahara and Hill, 2007: 2 lowland stream reaches of Boyne River, Ontario, CA (intensive agri. watershed)

Science Question

How do in-channel stream restoration structures affect:

- the hydraulic gradients in the stream channel and across the stream meander bend, and
- the intra-meander water table level?

Use methodologies that will provide:

- 1) direct comparisons between channels with structures and channels without structures, and
- 2) fine resolution of observation data at the scale of a stream meander.

Methods: Laboratory Experiments

Stream Channel Dimensions:

- Width to Depth ratio: 7 to 11

- Sinuosity: 1.9 Radius of Curvature: 26 cm

- Channel slope: 1% Valley slope: 1.5%

- D_{50} : 0.2 mm $n_{\text{no struct}} = 0.004$ $n_{\text{struct}} = 0.021$

- Initial channel: flat bed morphology

Experimental Runs:

- Discharge: 51 ml/s (~30% of channel capacity)

- Flow Duration: 7 hr

- 3 replications of channel without structures

- 4 replications of channel with 6 J-hooks and 1 cross-vane

Close-Range Photogrammetry:

- 2 NIKON D5100 digital cameras mounted 1.3 m from sand surface
- Digital photos taken of initial channel, river stage at 7 hr of flow, and channel after 12+ hr of no flow
- Floating white wax powder (0.3 mm diameter) indicated river stage and well water level
- Elevation values referenced to 5 control points surveyed by ultrasonic distance sensors (0.2 mm precision)

Methods: Post-Processing

Using ADAM Tech 3DM Analyst:

Using ESRI ArcGIS:

Analysis of variance on:

- Hydraulic gradients
- Water table levels

Longitudinal Profile of River Stage at the Channel Centerline

Having structures in the channel, especially the cross-vane, raised the river stage that is upstream of the structures.

- Backwater from damming effect

Hydraulic Gradient between US and DS River Stage

Having structures in the channel raised the river stage hydraulic gradient across the meander:

- neck by 0.94%
- center by 1.39%
- apex by 0.12%

The river stage hydraulic gradients of channels with structures and those of channels without structures are statistically different (p=0.0002).

The structures affected the hydraulic gradient across the meander locations disproportionately (p<0.0001).

Intra-Meander Cross-Sections

The steepest hydraulic gradient increase from inchannel structures occurred at the meander

6-29 Structures 7-2 Structures

7-3 Structures 7-4 Structures

7-7 No structures

7-8 No structures

7-9 No structures

The water level of the circled wells was statistically different:

- between channels with structures and those without structures (p=0.0057), and

♦ Structures

No Structures

- across meander locations (neck, center, apex) (p<0.0001).

The structures impacted these wells' water level disproportionately across meander locations (p=0.0001)

The water level of these wells was:

- marginally different between channels with structures and those without structures (p=0.0797), and
- statistically different across meander locations (p<0.0001).

The structures did NOT impact these well water levels disproportionately across meander locations (p=0.2889).

Hydraulic Gradient between US and DS River Stage during twice normal discharge

When discharge was doubled in channels with structures:

- river stage increased with similar magnitude throughout the channel, and
- hydraulic gradients across the meander bend remained relatively unchanged.

Result Summary

- In-stream restoration structures can locally raise the river stage upstream of where they are installed.
 - Cross-vanes can cause more backwater than J-hooks.
- The increase of intra-meander hydraulic gradients and water table levels by in-channel stream restoration structures is most pronounced at the intra-meander areas closest to the structures.
 - There is marginal water table level increase in the middle of the meander bend.
- The structures do not appear to further increase hydraulic gradients under higher stream flow.

Implications on Hyporheic Exchange

- Steep hydraulic gradients in riparian areas closest to the structures could indicate areas of induced lateral hyporheic exchange.
 - Potential biogeochemical hotspots in the intrameander zones.
- Larger stream flow in channels with restoration structures could induce more vertical hyporheic exchange due to higher hydraulic head.

Future Research

- More laboratory experiments to obtain observation data on hyporheic exchange flux and pathways in the stream channel and intra-meander zone.
 - Run experiments at different stream discharges and channel restoration designs.
- MODFLOW modeling to simulate and predict hyporheic exchange flux and pathways.
 - DEMs generated by our research process can provide fine resolution observation data of ground and water surfaces as MODFLOW boundary conditions.

Questions? References:

Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H., and Valett, H.M. (1998), The functional significance of the hyporheic zone in streams and rivers, *Annu. Rev. Ecol. Syst.*, 29, 59-81.

Crispell, J.K. and T.A. Endreny (2009), Hyporheic exchange flow around constructed in-channel structures and implications for restoration design, *Hydrol. Process.*, 23-1158-1168.

Hester, E.T. and M.W. Doyle (2008), In-stream geomorphic structures as drivers of hyporheic exchange, *Water Resour. Res.*, 44, W03417, doi:10.1029/2006WR005810.

Hester, E.T. and M.N. Gooseff (2010), Moving beyond the banks: Hyporheic Restoration is Fundamental to Restoring Ecological Services and Functions of Streams, *Environ. Sci. Technol.*, 44, 1521-1525.

Kasahara, T. and A.R. Hill (2007), Lateral hyporheic zone chemistry in an artificially constructed gravel bar and re-meandered stream channel, Southern Ontario, Canada, *Journal of the American Water Resources Association (JAWRA)* 43(5):1257-1269. DOI: 10.1111 / j.1752-1688.2007.00108.x.

Kasahara, T. and A.R. Hill (2007), In-stream restoration: its effects on lateral stream-subsurface water exchange in urban and agricultural streams in Southern Canada, *River Res. Applic.*, 23, 801-814

Lautz, L.K. and R.M. Fanelli, (2008), Seasonal biogeochemical hotspots in the streambed around restoration structures, *Biogeochemistry*, 91, 85-104.