# Navigating Benefit-Cost Analysis in Inland New York & New England

## ASHOKAN WATERSHED STREAM MANAGEMENT PROGRAM CORNELL COOPERATIVE EXTENSION OF ULSTER COUNTY

#### Phoenicia, New York

David Murphy, P.E., CFM Milone & MacBroom, Inc. Cheshire, Connecticut

June 26, 2014



## <u>AGENDA</u>

- Hazard Mitigation Background
- Benefit-Cost Analysis (BCA) Background
- General Guidelines for all BCA
- General Guideline for Inland New York/New England
- Case Studies Individual Mitigation Projects for Critical Infrastructure
  - Lessons Learned
- Important Changes in 2013-2014
- Case Studies Local Flood Analysis (LFA)
  - Lessons Learned

Benefit-Cost Analysis = BCA Benefit-Cost Ratio = BCR



## HAZARD MITIGATION BACKGROUND

- Communities must have a FEMA-approved Hazard Mitigation Plan in place to receive Federal grants for hazard mitigation projects
  - PDM (Pre-Disaster Mitigation)
  - HMGP (Hazard Mitigation Grant Program)
  - FMA (Flood Mitigation Assistance)
- With many declared disasters in recent years, HMGP tends to be the most available mitigation program









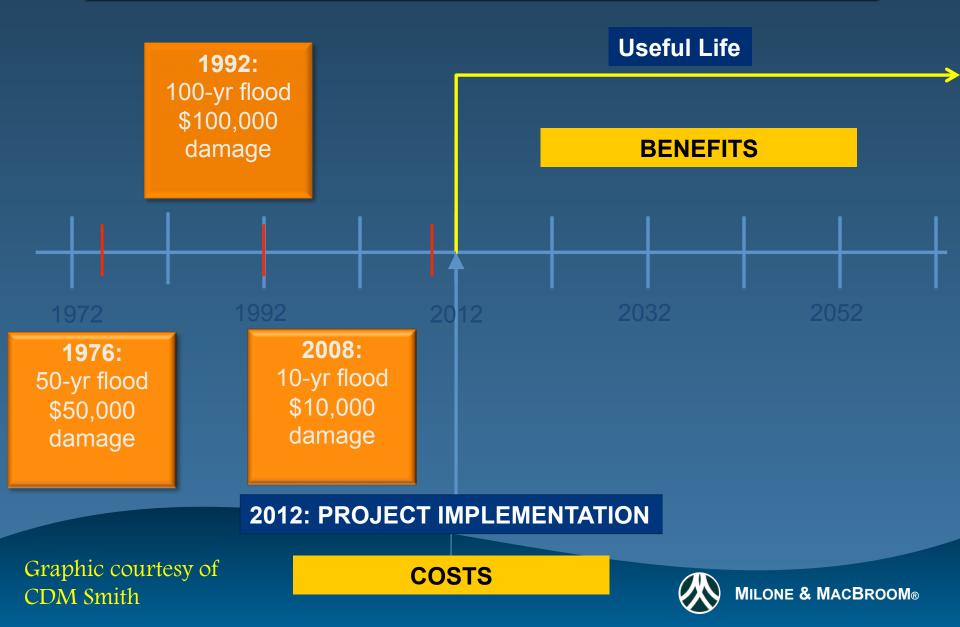
## HAZARD MITIGATION BACKGROUND

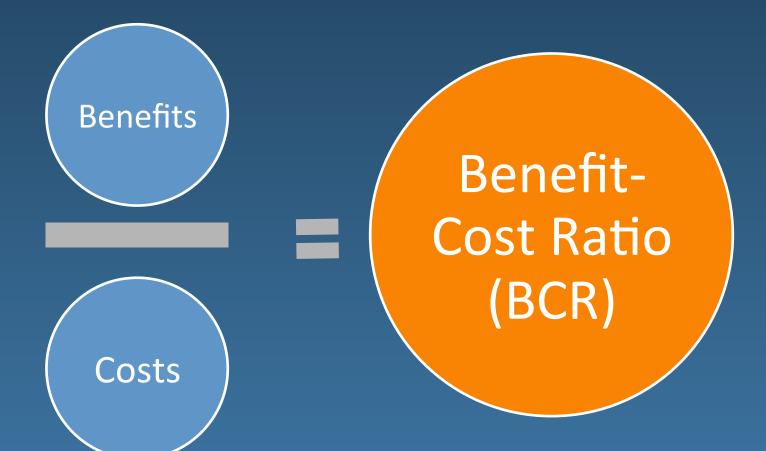
| Eligible Activities                                              | HMGP | PDM | FMA |
|------------------------------------------------------------------|------|-----|-----|
| Property Acquisition and Structure Demolition or Relocation      | Х    | Х   | Х   |
| Structure Elevation                                              | Х    | Х   | Х   |
| Mitigation Reconstruction                                        |      |     | Х   |
| Dry Floodproofing of Historic Residential Structures             | Х    | Х   | Х   |
| Dry Floodproofing of Non-residential Structures                  | Х    | Х   | Х   |
| Minor Localized Flood Reduction Projects                         | Х    | Х   | Х   |
| Structural Retrofitting of Existing Buildings                    | Х    | Х   |     |
| Non-structural Retrofitting of Existing Buildings and Facilities | Х    | Х   | Х   |
| Safe Room Construction                                           | Х    | Х   |     |
| Wind Retrofit for One- and Two-Family Residences                 | Х    | Х   |     |
| Infrastructure Retrofit                                          | Х    | Х   | Х   |
| Soil Stabilization                                               | Х    | Х   | Х   |
| Wildfire Mitigation                                              | Х    | Х   |     |
| Post-Disaster Code Enforcement                                   | Х    |     |     |
| Generators                                                       | Х    | Х   |     |
| 5% Initiative Projects                                           | Х    |     |     |



## • So... What <u>is</u> BCA?

✓ Process of determining the BCR ✓ A mitigation project cannot be funded by FEMA unless it has a BCR greater than 1.0 Benefits = Damages Avoided, units of \$ Benefits over the life span of project must exceed project cost ✓ FEMA's BCA tool must be used for this determination





#### Benefits = Damages Avoided, units of \$



Graphic courtesy of CDM Smith







Graphic courtesy of CDM Smith



Many good projects that reduce flood damage and protect water quality do <u>not</u> have BCR >1.0
These projects can be funded by someone or

something that is not FEMA

- However, we can also use BCA to evaluate projects that may not be appropriate for FEMA funding due to timing, logistics, project cost, or other factors
  - The new "Local Flood Analysis" (LFA) process is a good example



# **FEMA BCA Course Objectives**





- Estimate hazard mitigation project costs
- Compute hazard mitigation project benefits
- Identify, gather, and analyze BCA documentation required by FEMA

Today's presentation is less about how to estimate costs and run the program, and more about strategies to generate benefits

- The BCA tool includes six modules
- Two modules can evaluate flooding:
  - ✓ Flood✓ Hurricane Winds
  - ✓ Wildfire
  - ✓ Tornado
  - ✓ Earthquake
  - ✓ Damage Frequency





- The <u>Flood Module</u> determines long-term benefits (reduced damages) from the frequency analysis that is embodied in the Flood Insurance Study, on its profiles, and on the FIRMs
- The <u>Damage Frequency Module</u> determines long-term benefits (reduced damages) by analyzing the damages from <u>more than one</u> event with different recurrence intervals (frequencies)



- The BCA is tough on the northeast
- The Damage Frequency (DF) Module is often essential for our types of mitigation projects. Why?
  - $\checkmark$  Not every project site is in a FEMA SFHA
  - We don't necessarily need to acquire 100 homes from a floodplain, build a tornado safe room, or brace assets to prevent earthquake damage
  - We <u>are</u> trying to mitigate for road washouts, bank failures, landslides, erosional hazards, etc. – along with flooding of homes and businesses





## GENERAL GUIDELINES FOR ALL BCA

- For Flood module: we need the FIS, FIRM, and elevations
- For Damage Frequency module: we need knowledge of hydrology, recurrence intervals, and calculating precipitation event frequencies and flood event frequencies
- Benefits (\$) = Avoided damages and loss of function (\$)
- For the Damage Frequency module:
  - Reducing damage to utilities, roads, and critical facilities will help cost effectiveness
  - ✓ Damage must be frequent to generate BCRs > 1.0
  - ✓ Damage from <u>one</u> extreme event will not typically help a BCR > 1.0

Think about it this way: would we design a project for the 500-year flood? If not, should a mitigation project be funded for an event this rare?

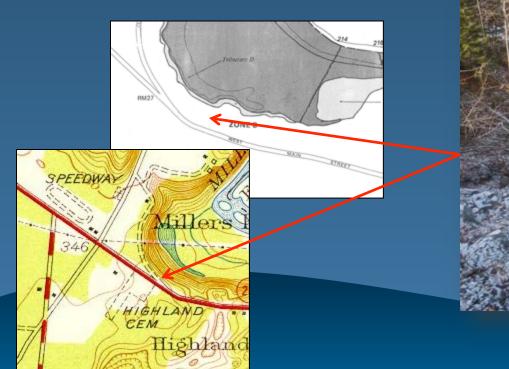


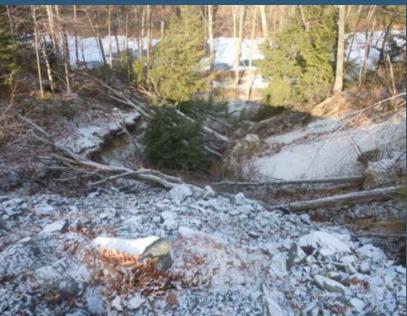
## GENERAL GUIDELINES FOR NY & NEW ENGLAND

- When using the Damage Frequency Module:
  - ✓ Search for local and small-scale intense rain and flood events to help <u>build a record of</u> <u>damage</u>
  - ✓ <u>Traffic counts and long detour</u> times may help and should always be considered
  - ✓ Losses of functions may be substantial in small communities (public works, highway, or the limited utilities that may be available)
  - ✓ <u>Protection of infrastructure</u> will generally help BCRs exceed 1.0
  - ✓ Tally the <u>labor hours and expenses</u> to recover from the previous damaging events
  - ✓ Include staff and volunteers









## CASE STUDIES

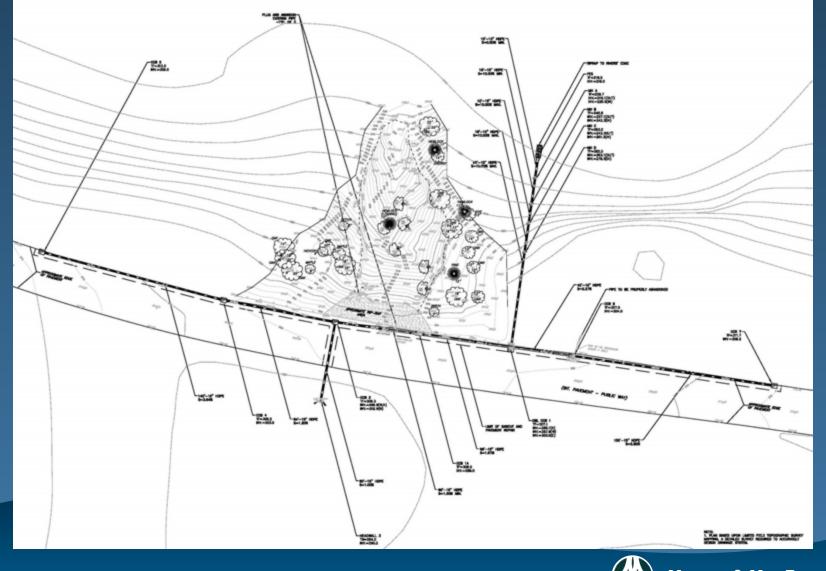
#### Individual Mitigation Projects for Critical Infrastructure (6 passing BCRs and 2 failing BCRs)



- Landslide threatens Millers Falls Road
- Project would be to stabilize the slope and prevent future erosion and failure of the roadway
- Road is arterial and provides emergency access between two villages
- Neither the road nor the slope are in a SFHA we MUST use the DFA module







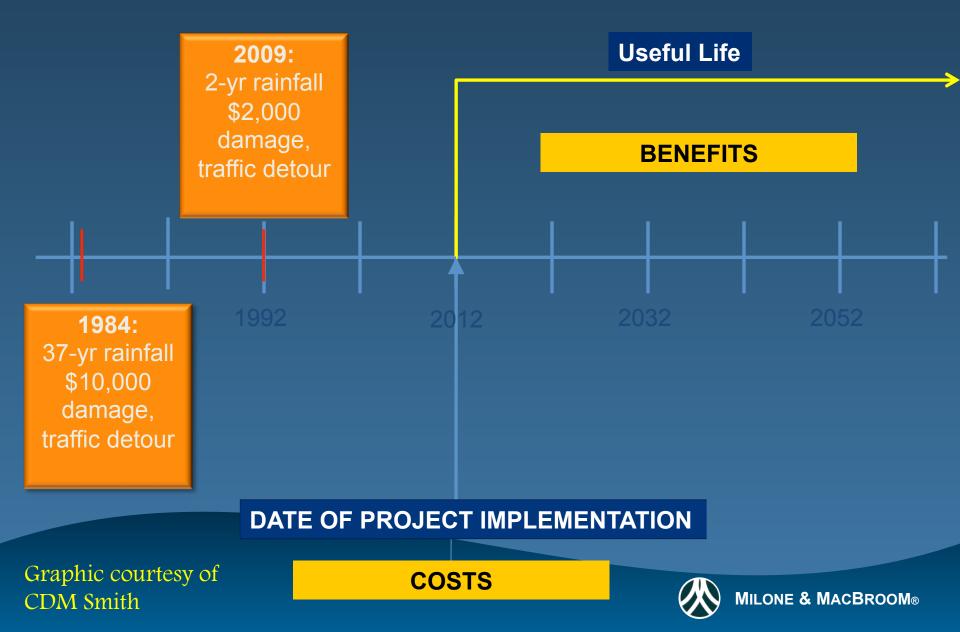

- Survey and preliminary design were needed for cost estimates
- Objectives: replace the undersized stormwater drainage system, eliminate sources of groundwater, and convey water to the base of the slope





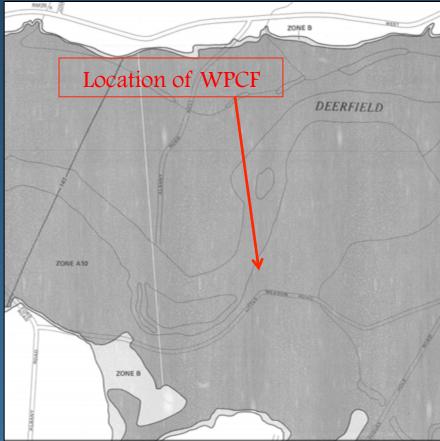





- Landslide event frequencies were determined
- Historical damages known from 1984 (37-year rain event) and 2009 (2-year rain event)
- Damage Frequency module utilized
- Loss of road causes a seven-minute detour for 4,300 vehicles
- Project design for 100-year storm
- Assume that 200-year storm will cause minor damage and sliding
- Project cost = \$327,000
- BCR = 2.01
- Lesson: a short detour may seem trivial but is important when coupled with high traffic counts






Note visible repairs from 2009





- Bank erosion along Deerfield River is threatening Little Meadow Road
- Project would be to stabilize the bank and prevent future erosion
- The road is within the SFHA associated with the Deerfield River
- The road is access to the WPCF and a sewer trunk is located in the road







- Determined that only conceptual design was needed due to nearby bank stabilization projects completed by NRCS
- The nearby projects could inform our design and our cost estimates
- Selected design was to use fabric soil wraps, riprap, and plantings





Adjacent NRCS project



Subject Site

- Historical erosion and event frequencies needed to be well understood
- October 2005 flood (17-year recurrence interval) eroded five feet laterally
- Historical aerial photographs were used to determine other erosion losses
- Damage Frequency module utilized
- Loss of bank may cause loss of 12-inch sewer trunk to WPCF that serves 1,657 people including Deerfield Academy and Historic Deerfield
- Complete inundation after sewer failure can cause an outage of many days





Inundation of road after Irene

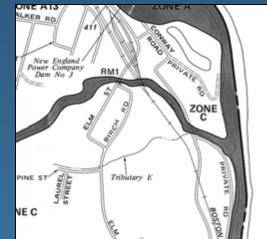






- Bank stabilization cost estimate of \$394,000
- Comparable to nearby NRCS project cost of \$400,000
- Designed to protect through the 100-year flood
- Assumed that the 500-year flood would cause damage
- Mitigation benefits of \$448,000
- BCR = 1.13
- Lesson: conceptual design may be sufficient, thus reducing up-front costs






Adjacent NRCS project



- Conveyance and drainage improvement that may alleviate nuisance and/or overbank flooding from a group of culverts
- Secondary benefit would be to prevent failure of culverts
- One stream is located in a SFHA crossing South Street
- Critical facility (Shelburne Falls WPCF) is accessed from this road









Possibility of upgrading one, two, or three culverts
Conducted survey, calculated existing capacities, selected new capacities





- Historical damages needed to be well understood
- Flood event frequencies were determined



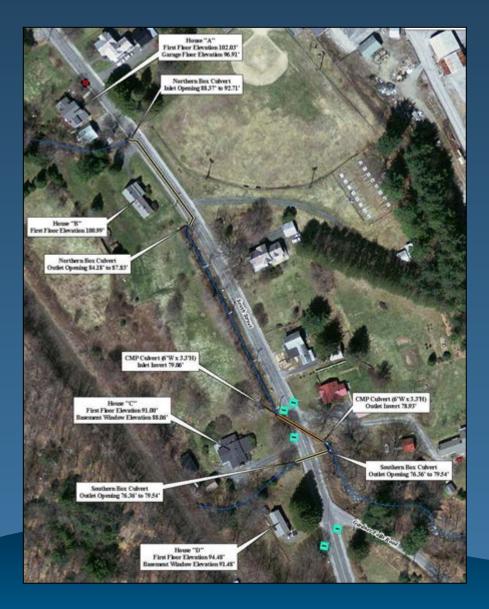
Gloria 1985







October 2005




Irene 2011



- Floods of 1985 (Gloria), 1999 (Floyd), and 2000 had recurrence intervals of 10, 12, and 6 years for the streams <u>and records of damage</u>
- Floods of 1987, 2005, and 2007 had poor damage records
- Damage Frequency module utilized
- Road closure causes 24-minute detour of 10 miles for 970 cars/day
- Loss of culverts may cause loss of 12-inch sewer trunk to WPCF that serves 1,740 people in Buckland and Shelburne
- Cost to repair road and sewer line would be \$618,000
- But we were faced with some tough questions:
  - Should the new culverts convey the 500-year storm? 100-year?
  - Should all three culverts be replaced?
  - Or only two?





- Replacement of two short segments would cost \$683,000
- BCR = 0.54
- No need to try BCA for all three culverts

#### Re-focus

- The middle culvert is least able to convey storm flows
- Design for 100-year storm
- Replacement of that one segment would cost \$361,000
- Benefits = 366,000
- BCR = 1.01
- Lesson: let the BCA expose the best project



- Severe erosion along the Chickley River occurred behind the highway garage during Irene
- The highway garage is a critical facility in this very small town
- The town does not participate in NFIP; flood hazard areas are not mapped
- Emergency streambank repair work had been conducted
- Was it appropriate?







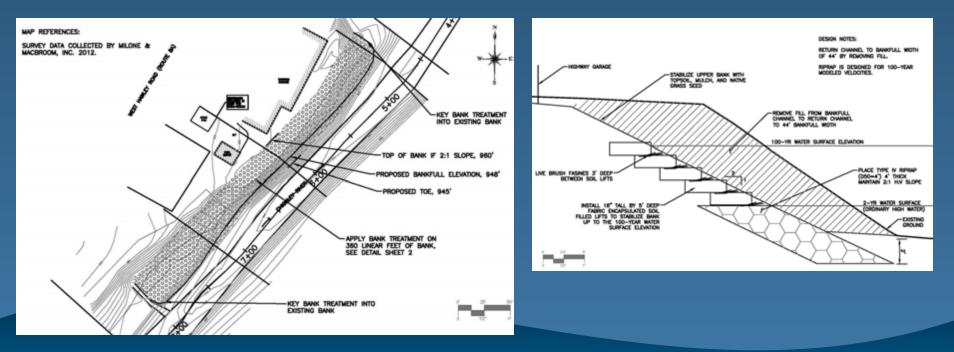




- Found that the riverbank had been put back together hastily
- An engineered solution was desired to reduce the effects of future floods
- The material in place now is unconsolidated and the channel was constricted more than it was prior to Irene
- HEC-RAS modeling showed a 50-year flood will wash away the current riverbank



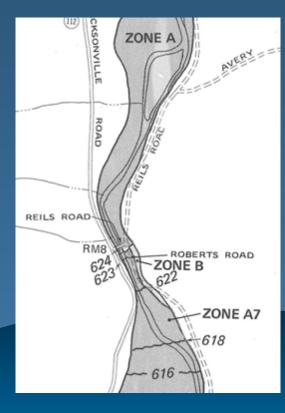
Is this material going to wash away during the next flood?

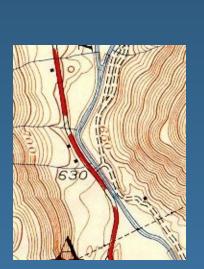





- Damage Frequency Module necessary to determine BCR
- The direct damage from Irene was \$248,000, plus:
  - ✓ The Town housed a fire truck in the garage; National Guard had to winch it out as it was tilting toward the collapsed part
  - $\checkmark$  The 2-way radio station was lost so radio communication was down for a while
  - $\checkmark$  Half of the building was unusable for nine months
- Damages from flood events were compiled (1998, 2005, and Irene)
  - ✓ Irene RI = 343 years
  - $\checkmark$  1998 RI = 185 years
  - $\checkmark$  2005 RI = 42 years
  - $\checkmark$  \$64,000 estimate for repairs in 1998
  - ✓ Negligible repairs in 2005
  - ✓ Two events with known recurrence intervals and damages were sufficient
- Designed fabric-encapsulated soil lifts above riprap
  - $\checkmark$  Riprap below annual high water
  - $\checkmark$  Soil lifts up to the 100-year flood level




- Project cost estimate was \$351,000
- Designed for 100-year flood and minor damage from 500-year flood
- Benefits were \$369,000 vs. total costs of \$354,000
- BCR = 1.04
- Project advanced to HMGP application
- Lesson: protection of critical facilities can lead to higher BCRs






### <u>#5 – Route 112/North River Bank Stabilization</u>

- The North River flows along the side of Route 112
- The flood from Irene caused additional erosion
- Loss of the road would be unacceptable because it is a designated evacuation route from the VT Yankee nuclear power plant
- The road carries significant traffic between Massachusetts and Vermont
- Riverbank stabilization was desired









### <u>#5 – Route 112/North River Bank Stabilization</u>

- Two sections of erosion: 300' at riverbend, 75' section at bridge
- An engineered solution was desired to reduce the effects of future floods



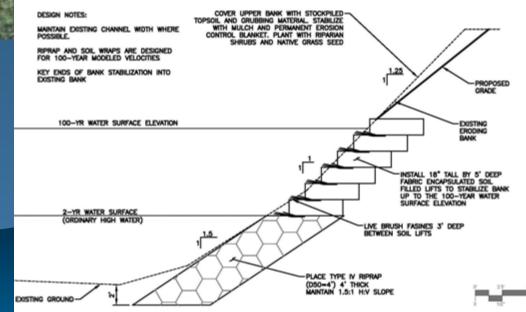
#### Upstream section at riverbend



Downstream section at bridge

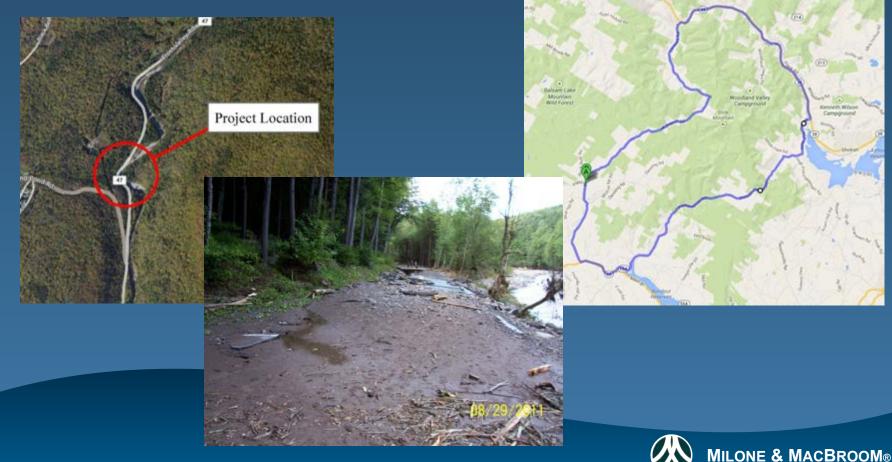


### <u>#5 – Route 112/North River Bank Stabilization</u>


- Damage Frequency Module necessary to determine BCR
- The following erosion rates were determined:
  - $\checkmark$  Annual spring storms cause minimal but measurable lateral erosion
  - ✓ A 10-year flood erodes three feet laterally based on storms that occurred from 1997 to 2009
  - ✓ Irene (RI = 343 years) eroded six feet laterally
- Traffic counts for Route 112
  - ✓ \$72,000 per day benefit!
  - ✓ Status as evacuation route for VT Yankee nuclear power plant was not needed
- Designed fabric-encapsulated soil lifts above riprap
  - $\checkmark$  Riprap below annual high water
  - $\checkmark$  Soil lifts up to the 100-year flood level
- Designed for 100-year flood and minor damage from 343-year flood



### <u>#5 – Route 112/North River Bank Stabilization</u>




- Project cost estimate was \$407,000
- Benefits were \$547,000 vs. total costs of \$410,000
- BCR = 1.33
- Project advanced to HMGP application
- Lesson: traffic counts did it again!





- The West Branch Neversink River flows along the side of Route 47
- The flood from Irene destroyed the road at this location
- The road carries moderate traffic but the detour adds 60 miles
- Riverbank stabilization was desired



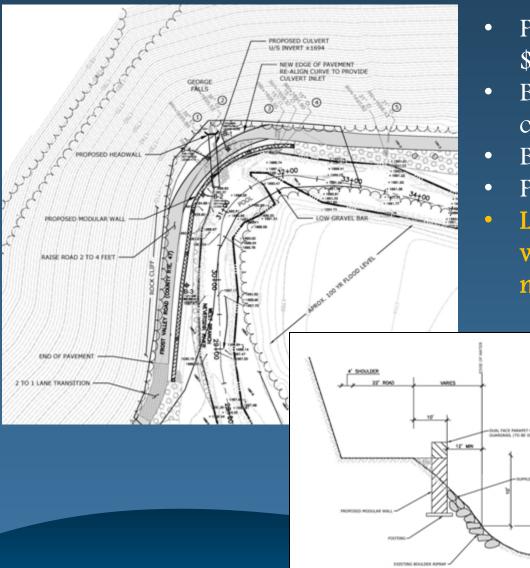
• Damage occurred in floods of 2005, 2006, 2011 (Irene), and 2012












- An engineered solution was desired to reduce the effects of future floods
- Designed sheet pile protection and new cross culverts from opposite side of the road
- Designed for 100-year flood and minor damage from 500-year flood
- Damage Frequency Module necessary to determine BCR
- Traffic counts for Route 47 were moderate at 466
  - $\checkmark$  \$41,000 per day benefit when combined with the detour!
  - $\checkmark$  Status as a key access route for the YMCA camp was not needed

| Date    | Event        | Damages   | Indirect Costs |
|---------|--------------|-----------|----------------|
| 6/28/06 | 8-yr flood   | \$8,000   | 1 lane open    |
| 8/28/11 | 20-yr flood* | \$595,000 | Closed 6 days  |
| 9/18/12 | 11-yr flood  | \$104,000 | Closed 3 days  |

\*When is it good for a big flood to plot as a frequent event? When calculating BCRs!





POINTING DOWNSTREAM

- Project cost estimate was \$645,426
- Benefits were \$825,106 vs. total costs of \$659,227
- BCR = 1.25
- Project advanced to HMGP
- Lesson: don't oversell Irene; if it was a 20-year flood at the nearest gauge, go with it
  - Lesson: long detours will offset low traffic counts





### A Postscript to #6 – "S-Turn" Bank Stabilization

- The 60% design cost estimate is \$804,000
- Recall that benefits were \$825,106
- Revised BCR = 1.01
- HMGP application will need to be amended
- Lesson: always make sure your BCR doesn't start at 1.0. A small buffer is good to have when the application is submitted.\*

\*Advice from FEMA Region 1



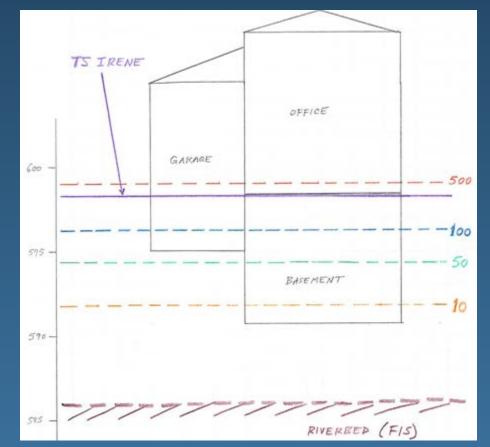
### <u>#7 – Colrain Highway Garage Relocation</u>

- The North River flooded the highway garage during Irene
- Basement and garage were inundated but the office was spared by an inch
- This is a critical facility in this small town
- Town's objective was to rebuild the highway garage elsewhere



#### Irene's high water




### <u>#7 – Colrain Highway Garage Relocation</u>

- Objective: relocate the highway garage from the SFHA
- Either Flood Module or Damage Frequency could be used to determine BCR
- Damage Frequency Module:
  - ✓ The highway garage was flooded twice in its history (1938 & Irene)
  - ✓ The damage from Irene was \$76,000
  - $\checkmark$  The degree of damage in 1938 was reportedly the same
- Flood Module:
  - $\checkmark$  FIS elevations published
  - $\checkmark$  Building elevations were available from the town
- The Town already owns the land and therefore would not need to acquire it
- Complication was that the building may not survive a relocation
- Constructing a new highway garage elsewhere was more feasible but less eligible under HMGP



### <u>#7 – Colrain Highway Garage Relocation</u>

- Project cost assumed = \$500,000 for a new highway garage or a relocation
- Benefits = \$30,000 from DF Module
- Benefits = \$36,000 from Flood Module
- BCR = 0.07
- The building doesn't flood frequently enough!
- Should it be in the SFHA? No
- Is it a good project? Yes
- BCR > 1.0? No
- Lesson: frequent damage is needed for BCR > 1.0; but critical facilities should be outside the 500-year flood zone



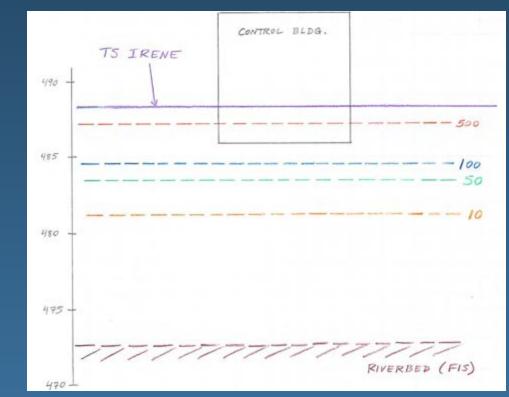


### <u>#8 – Shelburne Falls Wellfield Protection/Mitigation</u>

- The water supply wells for Shelburne Falls are along the North River
- The site was flooded and scoured during Irene
- This caused a temporary loss of supply for the Village of Shelburne Falls
- Objectives would be to elevate wellheads and/or protect the control house



### <u>#8 – Shelburne Falls Wellfield Protection/Mitigation</u>


- Additional scoping was necessary <u>what was really needed</u>?
- The water department determined that the wellheads were not the issue
- The well control building was flooded by Irene and this caused the outage
- The water elevation was higher than the 500-year flood elevation
- Objective was to utilize the Flood Module or the Damage Frequency Module to determine BCR
- Mitigation could include elevation of the building and/or dry floodproofing





### <u>#8 – Shelburne Falls Wellfield Protection/Mitigation</u>

- DFA module suffered from lack of information
- Flood module utilized the FIS and building elevations
- Project cost assumed = \$20,000
- Base of the building is *already* above the 100-year flood elevation
- Low frequency contributes to generated benefits of \$1,500
- BCR = 0.08
- Should it be in the 500-yr? No
- Is it a good project? Yes
- BCR > 1.0? No
- Lesson: frequent damage is needed for BCR > 1.0; but critical facilities should be outside the 500-year flood zone





# WHAT HAVE WE LEARNED?

- Many mitigation projects may alleviate flooding, erosion, etc.
- These may be good projects, but only some are cost-effective to FEMA
- Linkage to critical facilities, utilities, busy roads, and/or long detours will increase BCRs
- Frequent events will drive up the BCR
- Infrequent events will not drive up the BCR
- Don't be tempted to apply for mitigation funds for a project designed to address damage caused only by "the Irenes"
- A thoughtful and methodical selection process will successfully result in BCRs >1.0 and capture mitigation funding from FEMA



# WHAT HAVE WE LEARNED?

#### But what else did we learn? – Lessons learned in 2012/2013:

- After a disaster, there may be a strong desire to put rivers back together
- Without a way to link "restoration" to benefits, BCA isn't possible
- Towns may not be able to "see" the best projects while recovering
- Perhaps we need to search for good projects when we aren't busy recovering but will this discourage us from mitigating after disasters?

| Pre or Post-Irene | BCR  | Type of Project                    | Outcome             |
|-------------------|------|------------------------------------|---------------------|
| Pre               | 2.01 | Landslide Stabilization            | Funded under HMGP   |
| Post              | 1.33 | Route 112 Riverbank Stabilization  | Under Consideration |
| Post              | 1.25 | S-Turn Riverbank Stabilization     | Under Consideration |
| Pre               | 1.13 | Deerfield River Bank Stabilization | Funded under HMGP   |
| Post              | 1.04 | Highway Garage Bank Stabilization  | Under Consideration |
| Pre               | 1.01 | Culvert Replacement                | Funded under HMGP   |
| Post              | 0.08 | Well Control House Floodproofing   | Not submitted       |
| Post              | 0.07 | Highway Garage Relocation          | Not submitted       |



# IMPORTANT CHANGES IN 2013-2014

- 1. Standby power supplies are eligible for FEMA mitigation funds
- 2. Acquisitions are automatically cost-effective if <\$275,000 and located in the SFHA
- 3. Elevations are automatically cost-effective if <\$176,000 and in located the SFHA
- 4. Open space and riparian area benefits can be included in the BCR once it reaches 0.75 or greater
- 5. Non-stationary hazards (i.e., progressive bank erosion) can be evaluated more effectively rather than waiting for the "failure/ no failure" scenario
- 6. Volunteer time can be counted for tallying avoided response
- 7. Social benefits (avoided mental health issues) can be counted
- 8. Sea level rise can be considered



# IMPORTANT CHANGES IN 2013-2014

- <u>How</u> can the non-stationary hazard guidance help?
- Consider our landslide and riverbank examples:
  - $\checkmark$  The head of the landslide has already reached the road
  - $\checkmark$  The Deerfield River is within striking distance of the sewer trunk
  - $\checkmark$  The North River bank is within striking distance of Route 112
  - ✓ The Hawley Highway Garage can't wait any longer
- Wouldn't it be better to evaluate projects *before* failure is imminent?







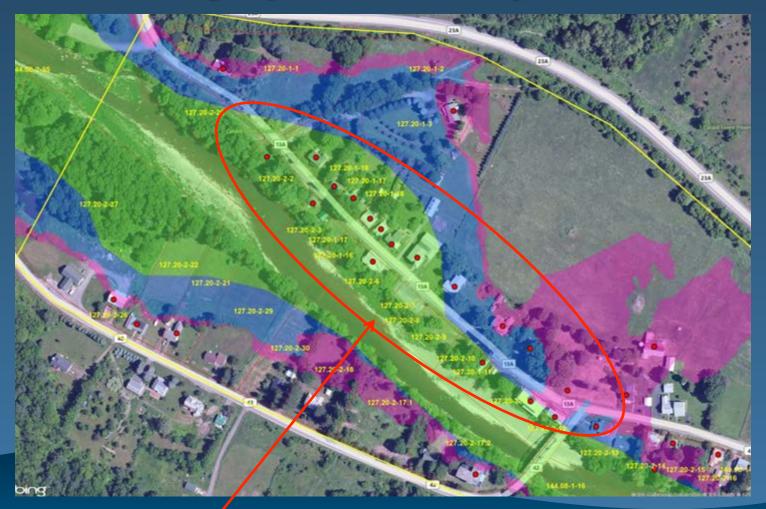
# CASE STUDIES

#### Local Flood Analysis (LFA) in Prattsville and Lexington



## PRATTSVILLE LFA

- Evaluation of <u>building acquisitions</u>
  - 18 commercial and residential buildings in the SFHA were run through a preliminary BCA using assessed values, approximate elevations, and the FIS hydraulic profile
  - ✓ BCRs ranged from 0.03 to 10.63, with only nine BCRs >1.0
- How can the automatic cost-effectiveness help?
  - ✓ 17 of 18 commercial and residential acquisitions may be costeffective under the new policy

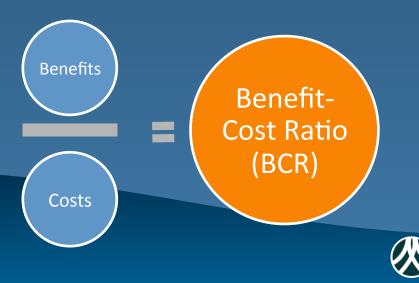







### LEXINGTON LFA

• Evaluation of <u>bridge replacement and floodplain bench creation</u>




Properties with FFE < 100-yr flood WSE



# LEXINGTON LFA

- Evaluation of bridge replacement and floodplain bench creation
  - ✓ 20 residential buildings and the old hotel in the SFHA were run through the Flood Module to <u>generate benefits</u> (not to generate BCRs)
  - ✓ Benefits ranged from \$1,700 to \$47,000 per house
  - ✓ Benefit approximately \$229,000 for hotel
  - ✓ These benefits will then be summed <u>outside</u> of the BCA program, and the sum will become the numerator in the BCR



# LEXINGTON LFA

- It is possible that the BCR will not be greater than 1.0
- Next steps:
  - ✓ Evaluate other funding sources
  - Evaluate building acquisitions and elevations some of them may qualify for automatic cost effectiveness under the "275/176" policy released in 2013











### -08/29/2011

# Links to BCA Resources

# Benefit Cost Toolkit Version 5.0 Download

 http://www.fema.gov/media-library/assets/ documents/92923

## Benefit Cost Analysis Training Manuals

- http://www.fema.gov/media-library/assets/ documents/28998
  - Dave Murphy recommends these manuals even though they are for an older version of the toolkit.

