Estimating Mineral Weathering Rates in Catskills Watersheds

Chris E. Johnson

Dept. of Civil & Environmental Engineering

Syracuse University

Erosion, Denudation and Weathering

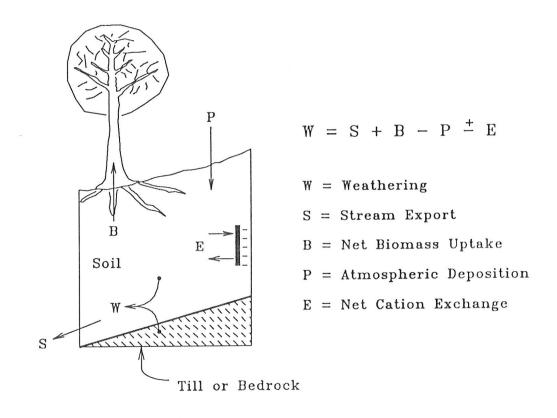
- <u>Erosion</u>: Generally refers to the transport of physical matter by water and wind.
- Weathering: Breakdown of rocks/minerals.
 - Physical
 - Chemical
- <u>Denudation</u>: Net lowering of the landscape.
 - Result of physical and chemical processes.

Chemical Weathering

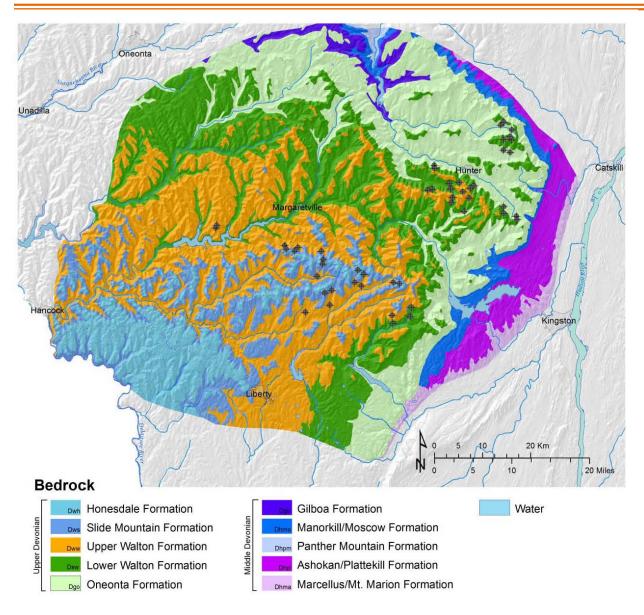
Dissolution of minerals in soils and parent material.

$$CaAl_2Si_2O_8(s) + 6H_2O + 2H^+ = 2Al(OH)_3(s) + Ca^{2+} + 2H_4SiO_4(aq)$$

- Releases dissolved substances to groundwaters.
 - Basic Cations: Ca, Mg, K, Na
 - Silica: H₄SiO₄
 - Aluminum: potentially toxic to aquatic biota
- Neutralizes acidity.
 - Crucial to sustainable water quality
 - Largely determines "critical load" of acid deposition in forested ecosystems.

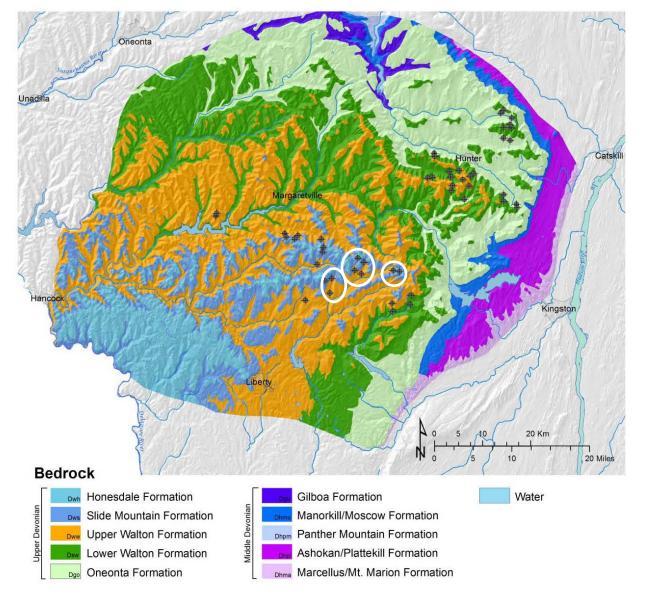

Estimation of Chemical Weathering Rates

- Chemical weathering is not readily measurable.
 - Very slow rate...
 - ...integrated over the total mineral surface area in soils and parent material in a watershed...
 - ...results in relatively large fluxes of Ca, Na, K, Mg, Si, etc.
 - → We need to use indirect methods to estimate fluxes of solutes from chemical weathering.


Catchment-Based Estimation of Chemical Weathering

 Watershed mass balances can be constructed for ions produced by chemical weathering:

Catchment-Based Estimation of Chemical Weathering



Candidate
Watersheds

(Ver Straeten, 2013)

Catchment-Based Estimation of Chemical Weathering

Neversink Drainage:

- Winnisook
- Biscuit Brook
- Pigeon Brook
- Fall Brook

(Ver Straeten, 2013)

Data Sources

- Precipitation Fluxes (P)
 - Biscuit Brook NADP site
 - For this analysis, no adjustments were made for elevation or aspect, though these are important (e.g., Weathers et al. 2000).
- Stream Fluxes (S)
 - Streamflow
 - USGS gages at Biscuit, Winnisook
 - Pigeon and Fall Brook estimated from Biscuit Brook data using watershed area ratio.
 - Monthly sampling for chemistry: 6/2010 7/2013
 - Flow-weighted average concentrations for July 1 June 30 water years.

Input-Output Budgets: Biscuit Brook

Flux	Water Year	Si	Mg	Ca	Na	K	Н		
		mol/ha/yr							
Precip	2010-2011	0*	9	24	48	7.4	238		
Stream		368	182	368	143	50	5.6		
Biomass									
Exchange									
Net Release		368	173	344	95	42	-233		
Flux	Water Year	Si	Mg	Ca	Na	K	Н		
			mol/ha/yr						
Precip	2011-2012	0*	9	27	36	5.2	205		
Stream		336	157	260	135	45	6.5		
Biomass									
Exchange									
Net Release		336	148	233	99	40	-198		
Flux	Water Year	Si	Mg	Ca	Na	K	Н		
		mol/ha/yr							
Precip	2012-2013	0*	7	23	35	5.1	154		
Stream		290	142	229	129	45	5.8		
Biomass									
Exchange									
Net Release		290	135	206	94	40	-148		

Net Depletion from Soil Exchange Sites (E)

- Period: 1984-2001
 - O Horizon: Warby et al. (SSSAJ, 2009)
 - 0-10 cm Mineral: Tamargo & Johnson (unpublished data Adirondack Region)
 - Δ Ca = -43 mol ha⁻¹ yr⁻¹
 - Δ Mg = -9.5 mol ha⁻¹ yr⁻¹
 - $\Delta K = +3.4 \text{ mol ha}^{-1} \text{ yr}^{-1}$
 - Δ Na = 0

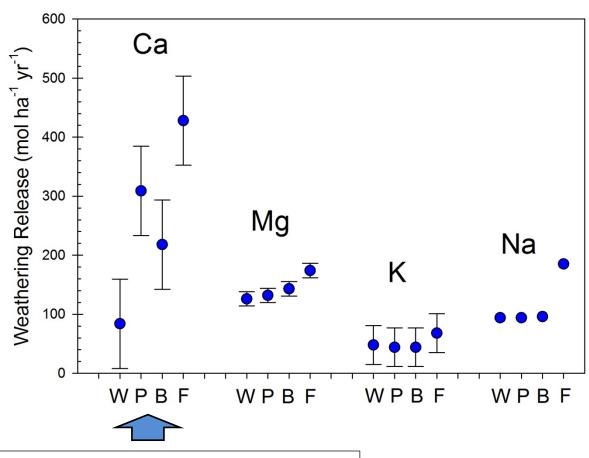
Soil Base Cation Depletion is a Small, but Meaningful, Flux

Biscuit Brook: 992 ha								
Flux	Si	Mg	Ca	Na	K	Н		
	mol/ha/yr							
Precip	0*	8.2	25	40	5.9	199		
Stream	331	160	286	136	47	6.0		
Biomass								
Exchange		-10	-43	0	3.4			
Weathering	331	143	218	96	44	-193		
Pigeon Brook: 706 ha								
Flux	Si	Mg	Ca	Na	K	Н		
mol/ha/yr								
Precip	0*	8.2	25	40	5.9	199		
Stream	336	150	377	135	46	4.5		
Biomass								
Exchange		-10	-43	0	3.4			
Weathering	336	132	309	95	44	-195		

Fall Brook: 1263 ha								
Flux	Si	Mg	Ca	Na	K	Н		
	mol/ha/yr							
Precip	0*	8.2	25	40	5.9	199		
Stream	374	191	496	225	71	8.1		
Biomass								
Exchange		-10	-43	0	3.4			
Weathering	374	174	428	185	68	-191		
Winnisook: 230 ha								
Flux	Si	Mg	Ca	Na	K	Н		
	mol/ha/yr							
Precip	0*	8.2	25	40	5.9	199		
Stream	387	144	152	134	50	215		
Biomass								
Exchange		-10	-43	0	3.4			
Weathering	387	126	84	94	48	16		

Net Uptake/Release from Biomass (B)

- FIA biomass estimates for Sullivan + Ulster + Greene:
 - -0.45% per year
- Layton abstract (this conference):
 - Most plots increased in diameter, basal area, volume between 2002/03 and 2012/13


Assumed range of ±0.45% yr⁻¹, Hubbard Brook, NH nutrient pools:

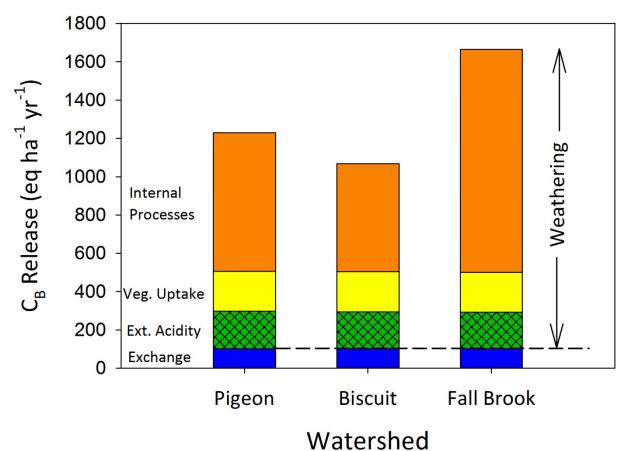
- Δ Ca = ± 75.6 mol ha⁻¹ yr⁻¹
- Δ Mg = ± 12.1 mol ha⁻¹ yr⁻¹
- Δ K = ± 32.8 mol ha⁻¹ yr⁻¹
- Δ Na = 0

Effect of Vegetation Uptake on Weathering Estimates

Averages for 2010-2013 (3 Water Years)

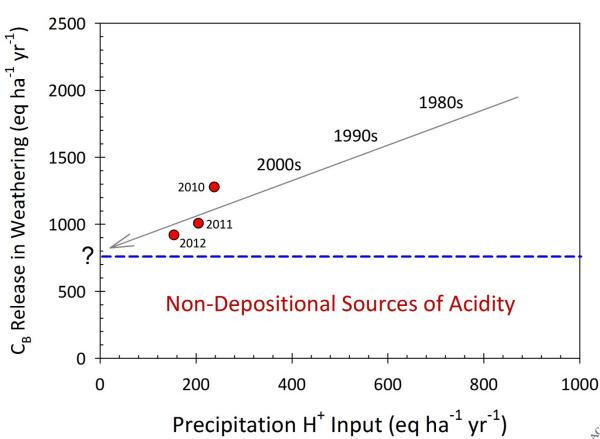
<u>W</u>innisook <u>P</u>igeon <u>B</u>iscuit <u>F</u>all Brook

Mineral Sources


- <u>Calcium</u>: dolomite, smectite, (plagioclase?)
- Magnesium: chlorite, biotite, dolomite
- Potassium: muscovite, biotite, (oligoclase?)
- <u>Sodium</u>: ??? (plagioclase? ancient marine clays?)

[Based on mineral chemistries in Ver Straeten, 2013]

Sources of Acidity for Weathering

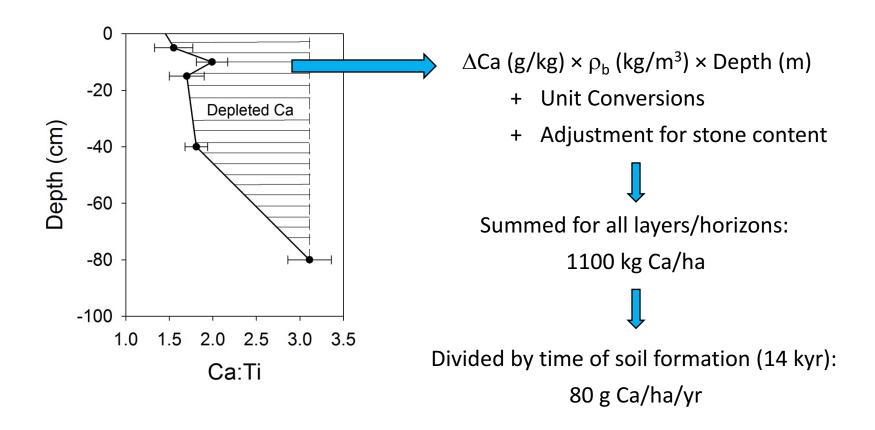

Averages for 2010-2013 (3 Water Years) (Aggrading Forest)

Towards Critical Loads

Biscuit Brook

Other Approaches

Modeling


- PROFILE (and its offspring)
 - Requires bulk soil/parent material chemistry, climate data, precipitation chemistry.
 - Successfully applied in Europe, Canada, USA
 - Used for setting critical loads targets in Europe

Element Depletion

 Estimate loss of weathering products relative to an immobile element (e.g., Zr, Ti)

Element Depletion Analysis

Conclusions/Data Gaps

- Net release of base cations in Catskills headwater catchments far exceeds external acid inputs.
- Depletion of cations from soil exchange sites and uptake by vegetation are potentially significant fluxes in the computation of weathering rates by mass balance analysis.
- Internal sources of acidity (e.g., CO₂ uptake, plant growth, nitrification, weathering of sulfides) account for most of the H⁺ required to explain base cation release in weathering.
- Key Data Gaps:
 - Forest biomass/growth data
 - Tissue chemistry of predominant tree species
 - Mineralogic composition of soil and till
 - Bulk chemistry of complete soil profiles (incl. 'immobile' elements)

