Optimizing Environmental Monitoring
Designs using Uncertainty Analysis
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Who needs environmental monitoring?

Gary M Lovett'", Douglas A Burns®, Charles T Driscoll’, Jennifer C Jenkins*, Myron J Mitchell®,
Lindsey Rustad®, James B Shanley’, Gene E Likens', and Richard Haeuber®

Environmental monitoring is often criticized as being unscientific, too expensive, and wasteful. While some
monitoring studies do suffer from these problems, there are also many highly successful long-term monitoring
programs that have provided important scientific advances and crucial information for environmental policy.
Here, we discuss the characteristics of effective monitoring programs, and contend that monitoring should be
considered a fundamental component of environmental science and policy. We urge scientists who develop
monitoring programs to plan in advance to ensure high data quality, accessibility, and cost-effectiveness, and
we urge government agencies and other funding institutions to make greater commitments to increasing the
amount and long-term stability of funding for environmental monitoring programs.

Front Ecol Environ 2007; 5(5): 253-260

Environmental monitoring consumes resources and
can be criticized for being unscientific.

We need an objective way to evaluate monitoring
plans, including the spatial and temporal intensity of
sampling.
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QUANTIFYING UNCERTAINTY IN
ECOSYSTEM STUDIES

Evaluating the efficiency of environmental monitoring
programs

Carrie R. Levine, Ruth D. Yanai, Gregory G. Lampman, Douglas A. Burns, Charles T.
Driscoll, Gregory B. Lawrence, Jason A. Lynch, Nina Schoch

Ecological Indicators 39: 94 — 101 (2014)

This study was supported by the New York State Energy Research
and Development Authority, which supports environmental monitoring
for air pollutants associated with the electric power industry.



Analysis of Case Studies

Case study Model Parametric or Spatial or Research
Subsampling Temporal Question
streams regression subsampling, temporal magnitude of
followed by detectable change
parametric in slope, one point
in space
loons t-test parametric (we spatial detectable change
have verified this over time, based
approach with on one sample in
subsampling) time
forest biomass mean subsampling spatial (we have magnitude of
also done spatial uncertainty
temporal)
lakes repeated subsampling, spatial and uncertainty of
measures mixed followed by temporal concentration;
effects model statistical analysis magnitude of

detectable change
in slope, including
spatial variability




Uncertainty in Linear Regression

Question:

» How often should stream chemistry

samples be collected to detect long-term
chemistry trends?

Data sets used in analysis:

* Biscuit Brook weekly stream chemistry
(1996-2003).

Analytical approach:

* We simulated reduced sampling efforts
and evaluated confidence in the detection
of change over time, using linear
regression.

» Weekly, biweekly, monthly, bimonthly.

NYSDEC: http://ny.cf.er.usgs.gov/nyc/site_page.cfm?1D=01434025



Subsampling the data set affects the slope and intercept of the
regression of long-term data.
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The error in the slope increases as sampling intensity decreases.



Effect of reduced sampling schemes on detectability of long-
term trends in stream chemistry at Biscuit Brook (1996-2003)

# of significant regressions / Total # of possible regressions

Weekly Biweekly Monthly Bimonthly
SO, 1/1 2/2 3/4 3/8
NO,- 1/1 2/2 3/4 4/8
H* 1/1 1/2 2/4 2/8
Al 1/1 2/2 4/4 718




Detectable Difference (T-test)

Question:

* How many samples would be required
to detect a change in mercury in loons
at a future sampling date?

Data sets used in analysis:

* One-time survey, 42 lakes, different
numbers of loons per lake

J :ul\“\““w

Analytical approach:

The detectable difference 6 for a two-
sample t-test is; 5 =(s/Nni2Xt,., v,

where s is the standard deviation of the paired http://images.nationalgeographic.com/wpf/media-live/photos/OO0/007/cache/
differences, n= sample size, t ., is the (1- a/2) x 100 common-loon_794_600x450pg

percentile of the t-distribution, t 5, is the 100 x (power)

percentile of the t-distribution, v = 2n-2 degrees of

freedom, a is the probability of a Type | error, and B is

the probability of a Type Il error.




Detectable difference of THg in loon blood for females (n=36 lakes),
males (n= 37 lakes), all adults (n= 42 lakes) and juveniles (n= 34 lakes).
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Detectable difference of exchangeable cation concentrations (mg kg dry
soil) in mineral soil samples collected by the FIA in 56 plots in the
Adirondack region.
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These case studies illustrate the effect of sampling intensity on statistical power and the
selection of a sampling interval likely to detect an expected change over time



Subsampling

Question:

* How many plots should be sampled to
report forest biomass with known
confidence?

Data sets used in analysis:

 Hubbard Brook Watershed 6, where
every tree is measured on each of 208

plots (each 25m x 25 m) every 5 years.
We used data from 2002.

Analytical approach:

* We randomly selected subsets of plots
and reported uncertainty in the estimates
of forest biomass.

www.plymouth.edu



'Hubbard Brook W6:
Total Biomass by
plot as of 2002

Elevation Zones
[] Upper zone

| Middle zone
] Lower zone

Biomass

1 <150 Mg/ha
-1 150-200 Mg/ha
1 200-250 Mg/ha
B 250-300 Mg/ha
M >300 Mg/ha

The range in elevation is 550-700 m, with
significant vegetation change. Biomass
equations were developed for three
elevational bands. We used these three
bands as strata when subsampling.




W6 aboveground biomass (Mg ha-)
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Yanai et al. (2010, Ecosystems) estimated uncertainty in the Hubbard Brook
Valley, including measurement error of tree diameters, uncertainty in allometric
equations, and sampling error (with varying numbers of plots)

Table 1. Uncertainty in Estimation of N Content of Trees at Hubbard Brook, Reported as (a) the Coefficient
of Variation (the Standard Deviation Divided by the Mean) and (b) kg N/ha of 100 Monte Carlo Iterations

Stem wood  Stem bark  Branches  Leaves and twigs Roots  Total biomass

(a) Coefficient of variation (%)

Diameter measurement 0.03 0.02 0.03 0.02 0.02 0.02
Height equations 3 3 3 2 3 3
Allometric equations 2 5 14 7 6 4
N concentration 5 3 4 2 7 3
Sampling error (15 plots) 8 7 7 5 6 6
All sources combined 9 8 14 9 11 8
All sources, 5 plots 18 13 22 12 18 15
All sources, 10 plots 11 9 20 10 12 10
All sources, 20 plots 8 8 16 10 11 8
All sources, 30 plots 8 7 16 10 10 7
All sources, 40 plots 8 7 15 10 9 7
All sources, 60 plots 7 8 17 10 10 7

Overall uncertainty does not decrease as the number of plots increases above 20,
as this source becomes insignificant (the others amount to 7%).



Repeated Measures Mixed Effects Model

Question:

* When monitoring Adirondack
lakes, how many lakes should be
monitored, and how often?

Data sets used in analysis:

» The Adirondack Lake Survey
Corporation monthly lake water
samples for a full suite of
chemistry analyses from 48 lakes
from 1992-2010.

Analytical approach:

» We randomly selected subsets of the
data and applied a repeated-
measures mixed-effects model to
describe uncertainty in the
estimates.
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The number of lakes showing significant trends over time in mixed model
tests decreases as sampling effort decreases

Number of Lakes Showing Significant Trends Over Time (of a total of 48)

Percent of
Current | Sampling 2+ +
Sampling | Scheme SO, NO, NH, Ca ANC H SUM
Effort
100 All months* 48 42 26 45 43 36 240
67 Mar-Oct 48 15 0 36 27 15 141
58 Mar-Sept 48 14 0 33 25 17 137
Even
50 months 48 9 0 34 23 11 125
50 Odd 48 9 0 36 25 13 131
months
Mar-Apr,
42 June, Sept- 47 6 0 31 22 9 115
Oct
Seasonal
33 (Feb, May, 46 6 0 27 18 10 107
Aug, Nov)
Seasonal
33 (Jan, Apr, 48 6 0 29 15 7 105
July, Oct)
Seasonal
33 (Mar, Jun, 46 5 0 29 22 9 111
Sept, Dec)
33 Mar, Apr, 47 5 0 31 17 6 106

Sept, Oct




Summary and Recommendations

Uncertainty analysis can provide an objective way to evaluate
monitoring plans, including the spatial and temporal intensity of
sampling.

Comparing sources of uncertainty can help identify where best to
direct effort to improve knowledge.

Statistical models can handle complex designs, including mixed
intensities and unbalanced designs.

When reducing sampling intensity, the information from past
sampling is not lost or wasted.

It is important to provide enough information that other researchers
can represent the uncertainty in your results.



Join QUEST!

Find more information at:;
www.guantifyinguncertainty.orq

Read papers, share sample code,
stay updated with QUEST News

Email us at
quantifyinguncertainty@amail.com

Follow us on LinkedIn and Twitter:
@QUEST_RCN
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